Document Type

Article

Publication Title

Journal of Medical Internet Research

Publication Date

6-2023

Page Number

52888

Keywords

artificial intelligence, AI, Delphi, disparities, engagement, ethics, health disparities

Disciplines

Computer Law | Health Law and Policy | Law

Abstract

Background:

Artificial intelligence (AI) and machine learning (ML) technology design and development continues to be rapid, despite major limitations in its current form as a practice and discipline to address all sociohumanitarian issues and complexities. From these limitations emerges an imperative to strengthen AI and ML literacy in underserved communities and build a more diverse AI and ML design and development workforce engaged in health research.

Objective:

AI and ML has the potential to account for and assess a variety of factors that contribute to health and disease and to improve prevention, diagnosis, and therapy. Here, we describe recent activities within the Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Ethics and Equity Workgroup (EEWG) that led to the development of deliverables that will help put ethics and fairness at the forefront of AI and ML applications to build equity in biomedical research, education, and health care.

Methods:

The AIM-AHEAD EEWG was created in 2021 with 3 cochairs and 51 members in year 1 and 2 cochairs and ~40 members in year 2. Members in both years included AIM-AHEAD principal investigators, coinvestigators, leadership fellows, and research fellows. The EEWG used a modified Delphi approach using polling, ranking, and other exercises to facilitate discussions around tangible steps, key terms, and definitions needed to ensure that ethics and fairness are at the forefront of AI and ML applications to build equity in biomedical research, education, and health care.

Results:

The EEWG developed a set of ethics and equity principles, a glossary, and an interview guide. The ethics and equity principles comprise 5 core principles, each with subparts, which articulate best practices for working with stakeholders from historically and presently underrepresented communities. The glossary contains 12 terms and definitions, with particular emphasis on optimal development, refinement, and implementation of AI and ML in health equity research. To accompany the glossary, the EEWG developed a concept relationship diagram that describes the logical flow of and relationship between the definitional concepts. Lastly, the interview guide provides questions that can be used or adapted to garner stakeholder and community perspectives on the principles and glossary.

Conclusions:

Ongoing engagement is needed around our principles and glossary to identify and predict potential limitations in their uses in AI and ML research settings, especially for institutions with limited resources. This requires time, careful consideration, and honest discussions around what classifies an engagement incentive as meaningful to support and sustain their full engagement. By slowing down to meet historically and presently underresourced institutions and communities where they are and where they are capable of engaging and competing, there is higher potential to achieve needed diversity, ethics, and equity in AI and ML implementation in health research.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.