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There are many stories in the media highlighting the 
multitude of ways by which genomic data are now 
relied upon, including in basic research, clinical care, 
discovering relatives and ancestral origins, tracking 
down criminals, and identification of victims. At the 
same time, numerous reports from around the world 
illustrate that some people are concerned about how 
genomic information that relates to them are used, often 
stated as challenges to privacy. These apprehensions do 
have some foundation as people can suffer harm if data 
about them are used in ways they do not agree with, for 
example, to examine ancestry1 or to create commercial 
products2 without the individual’s approval, or if the data 
are used in a manner that causes an individual to suffer 
adverse consequences such as stigmatization3, disrup-
tion of familial relationships4,5 or loss of employment 
or insurance. However, the law provides limited, patchy 
protection6,7.

The concept of privacy and its protection has many 
facets8. People may wish to control how genomic data 
about them are used but, in many cases, they only have 
the choice to opt in (or opt out) based on the terms con-
tained in a consent form or a service agreement9, which 
frequently goes unread10,11. In other instances, people 
may not have any choice at all about how genomic data 
about them are used, such as when data are deemed 
to be anonymised in accordance with the General 
Data Protection Regulation (GDPR)12 of the European 
Union (EU), de-​identified in accordance with the Health 
Insurance Portability and Accountability Act of 1996 
(HIPAA)13–15 or considered non-​human subject data in 
accordance with the Common Rule for the Protection 
of Human Research Participants16 in the United States. 
Another aspect of privacy is the right to solitude 
(often voiced as the right to be left alone), a principle 

first formalized in legal circles in the late 1800s17, which 
could include the right not to be (re)contacted about 
ancillary findings generated from genomic testing or 
discovery-​driven investigations into existing genomic 
data sets18,19 or by previously unknown relatives20,21.

Yet, the right to privacy has never been absolute, 
in part because many uses of these data, such as clini-
cal care, research, exploring ancestry, finding relatives 
and identifying criminal suspects and victims of mass 
casualties, can be valued by users, other stakeholders, 
or society at large. For example, even though physicians 
have strong ethical and legal duties of confidentiality that 
require them not to disclose patients’ information to oth-
ers, these obligations are not unconditional because the 
law has created numerous exceptions such as for public 
health reporting22 or in criminal investigations.

Although the tension between privacy and data util-
ity raises an array of ethical issues23–25 regarding when 
genomic data can be accessed and used, this Review 
focuses on the primary tools that are applied to define 
and protect these boundaries: law (as instantiated in 
statutes, regulatory regimes and case law), policy and 
technology. Several reviews on genomic data privacy 
have been published over the years in response to the 
evolution of approaches to intrude upon, and protect, 
privacy. Initially, Malin appraised the robustness of 
genetic data de-​identification26. This study was followed 
by Erlich and Narayanan who analysed and categorized 
computational methods for re-​identification, in light of 
new techniques for surname inference, and potential 
risk mitigation techniques27. Naveed et al. reviewed the 
privacy and security threats that arise over the course of 
the genomic data lifecycle, from data generation to its 
end uses28. Wang et al. studied the technical and ethical 
aspects of genetic privacy29. Arellano et al. reviewed 
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policies and technologies for protecting the privacy 
of biomedical data in general30. More recently, Mittos 
et al. systematically reviewed privacy-​enhancing tech-
nologies for genomic data and particularly highlighted 
the challenges associated with using cryptography to 
maintain privacy over a long period of time31. Grishin 
et al. reviewed the emerging cryptographic tools for pro-
tecting genomic privacy with a focus on blockchains32. 
Bonomi et al. reviewed privacy challenges as well as 
technical research opportunities for genomic data 
applications such as direct-​to-​consumer genetic test-
ing (DTC-​GT) and forensic investigations33. Similarly, 
numerous articles have addressed the incomplete and 
inconsistent protection that the law provides from harms 
to individuals and groups in different settings3,19,34–36.

Our Review diverges from prior work in that we con-
sider it essential to discuss the legal and technological 
perspectives together. This is because technological inter-
ventions can heighten, but also ameliorate, legal risks, 
whereas some laws provide control or protect people 
from downstream harm from data use, thereby opening 
the door to different and perhaps less stringent techno-
logical protections. Moreover, recent disruptions asso-
ciated with mandates for data sharing37,38, the DTC-​GT 
revolution and the coronavirus disease 2019 (COVID-19)  
pandemic — events that have dramatically accelerated 
the collection and use of genomic data39–41 — have dra-
matically changed the social environment in which 
genomic data are obtained and used. Blending legal and 
technical protections in a holistic ecosystem of genomic 
data is challenging because protections are intercon-
nected but vary in the environments in which they were 
developed, the stakeholders involved and their underly-
ing assumptions. To demystify the connections among 
and the assumptions behind different legal and technical 
protections, we partition the ecosystem into four settings: 
health care, research, DTC and forensic settings.

In this Review, we begin with a brief overview of 
attacks on privacy in the context of genomic data shar-
ing and subsequently discuss both how to mitigate pri-
vacy risks (through technical and legal safeguards) as 
well as the consequences of failing to do so effectively. 
Next, we categorize legal protections according to dif-
ferent settings since each setting tends to have unique 
laws and policies; meanwhile, we identify settings where 
each technical protection was first introduced and/or 
has been frequently applied. We consider the particular 
challenges that can arise in the research setting itself. 

We then note that genomics researchers also need an 
appreciation of the larger ecology of the flows of genomic 
data outside the research and health-​care settings in 
light of their impact on data privacy and public opin-
ion and thus ultimately on public support for genomic 
research. Thus, we discuss DTC-​GT, the obligations that 
companies that provide these tests owe to users, and the 
consequences of use by consumers to find relatives and 
by law enforcement to find criminal suspects. For ref-
erence, Fig. 1 illustrates an overview of privacy intru-
sions and safeguards in the ecology of genomic data 
flows, and Table 1 summarizes various aspects of the 
technical literature featured in this Review. In our dis-
cussions, a first party refers to the individual to whom 
the data correspond, whereas a second party refers to the  
organization (or individual) who collects and/or uses  
the data for a purpose that the first party is made aware of.  
By contrast, third parties refer to users (or recipients) 
of data who have the ability to communicate with the 
second party only and might include malicious attackers. 
Examples of third parties include researchers who access 
data from an existing research study or a pharmaceutical 
company that partners with a DTC-​GT company. We 
conclude with a discussion of what legal revisions and 
technical advances may be warranted to balance privacy 
protection with the benefits to individuals, commercial 
entities, researchers and society that result from flows 
of genomic data.

Privacy intrusions and protections
Privacy intrusions
Individuals may suffer harm when data about them are 
used without their permission in ways they do not agree 
with. In contrast to summary data aggregated across 
many participants, individual-​level data that identify 
the people to whom they pertain, not surprisingly, 
pose a greater risk of harm to the person. For example, 
breaches of identified data might reveal a health con-
dition that the participant had wished not to become 
public or cause them to suffer adverse consequences 
such as reputational damage or loss of employment, 
insurance, or other economic goods3. These disclosures 
can occur when data holders lose the data, for instance, 
by misplacing an unencrypted laptop, or when third par-
ties deliberately attack large, identified data collections; 
therefore, security becomes particularly important when 
conducting research using identified data.

Much research using genomic data, however, is 
conducted with additional types of data, such as demo-
graphics, social and behavioural determinants of health, 
and phenotypic information at the molecular and/or  
clinical level (for example, data derived from elec-
tronic health records), from which standard identifying 
information have been removed. Yet, there has been a 
vigorous debate about whether genomic data can be 
de-​identified or anonymised on its own or in combi-
nation with the accompanying individual information. 
Over the years, a number of investigators have famously 
demonstrated their ability to re-​identify individuals 
whose data have been used without common identi-
fiers for genomics research. The following provides a 
summary of these attacks.
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Blockchains
A blockchain is a decentralized 
digital ledger of records, called 
blocks, that are linked together 
using cryptography and  
are distributed across a 
peer-​to-​peer network of 
computers.
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Re-​identification. Sharing individual-​level genomic data, 
even without explicit identifiers, creates an opportunity 
for re-​identification42. For example, a data recipient 
could infer phenotypic information from genomic data 
that may be leveraged for re-​identification purposes27,43. 
In one study, researchers re-​identified individuals in a 
data set of whole-​genome sequences by predicting visual 
traits, including eye and skin colour44. Similarly, genomic 
attributes might be inferred from phenotypic traits 
(for example, physically observable disorders45, visual 
traits46,47 or 3D facial structures48) for re-​identification 
purposes, although the actual power of these attacks is 
debatable47,49,50. In addition, known pedigree structures 
may be leveraged to re-​identify genomic records51.

Moreover, potential identifiers may be inferred from 
the demographic information that is often shared with 

genomic data, through linkage to other readily accessi-
ble data sources. In 2013, participants of the Personal 
Genome Project52 were re-​identified by Sweeney et al. 
by linking these participants’ data records to publicly 
available voter registration lists using demographic 
attributes53. In the same year, Gymrek et al. re-​identified 
certain participants of the 1000 Genomes Project by 
first inferring surnames from short tandem repeats 
(STRs) on the Y chromosome, which, in combination 
with other demographics, were then linked to identified  
public resources54.

Membership inference. In genome–phenome investiga-
tions, such as genome-​wide association studies (GWAS), 
researchers commonly publish only summary statistics 
that are useful for meta-​analyses55. However, in 2008, 
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Fig. 1 | An overview of privacy intrusions and safeguards in genomic data 
flows. The four routes of genomic data flow (as indicated by the arrow colours) 
represent four settings in which data are used or shared: health care (red), 
research (gold), direct-​to-​consumer (DTC; green) and forensic (dark blue).  
The grey line represents a combination of the first three settings. In the 
health-​care setting, data collected by a health-​care entity (for example, 
Vanderbilt University Medical Center) are protected by the Genetic 
Information Nondiscrimination Act of 2008 (GINA)128 and the Health Insurance 
Portability and Accountability Act of 1996 (HIPAA)116,117 for primary uses. In the 
research setting, data collected by a research entity (for example, 1000 
Genomes Project, Electronic Medical Records and Genomics (eMERGE) 
network or All of Us Research Program) are primarily protected by the 
Common Rule14,124 for primary uses and protected by the US National Institutes 
of Health (NIH) data sharing policy37,38 for secondary uses. In the DTC setting, 
data collected by a DTC entity are protected by the European Union’s General 
Data Protection Regulation (GDPR)12 and/or the US state privacy laws (for 
example, California Consumer Privacy Act130, California Privacy Rights Act131 
or Virginia Consumer Data Protection Act132) for primary uses and protected 

by self-​regulation (for example, data use agreements36, privacy policies173 or 
terms of service174) for secondary uses. In the forensic setting, data shared with 
law enforcement are protected by informed consent192. A first party refers  
to the individual to whom the data correspond, whereas a second party  
refers to the organization (or individual) who collects and/or uses the data for 
a purpose that the first party is made aware of. By contrast, third parties refer 
to users (or recipients) of data who have the ability to communicate with the 
second party only and might include malicious attackers. Examples of third 
parties include researchers who access data from an existing research study or 
a pharmaceutical company that partners with a DTC genetic testing company. 
The data flow from a DTC entity to a research entity is represented by the arrow 
at the bottom. Confidentiality is mostly concerned when data are being used, 
whereas anonymity and solitude are mostly concerned when data are being 
shared. Specifically, cryptographic tools31 protect confidentiality against 
unauthorized access attacks, whereas access control27 and data perturbation 
approaches83 protect anonymity against privacy intrusions such as 
re-​identification and membership inference attacks. We simplify the figure by 
omitting the impacts of GDPR and data use agreements in the research setting.

Short tandem repeats
(STRs). Short tandemly 
repeated DNA sequences  
that occur when two or more 
nucleotides (A, T, C or G) are 
repeated and the repeated 
sequences are adjacent to 
each other.

Nature Reviews | Genetics
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Table 1 | A taxonomy of technical research articles on genomic data privacy featured in this Review

Attack or 
protection

Use Data flow Data level setting How attacks or 
protections are 
achieved

Attributes studied other than 
genotypes/how data are used

Refs

Anonymity

Attack Secondary Share Individual Health care Re-​ID Demographics, hospital trail 42

Research Re-​ID NA 84

Pedigree 51

Re-​ID, genotype 
imputation

Signal profiles 90

Re-​ID, genotype 
inference

Diseases 45

Visual traits/3D facial structures 46–48

Re-​ID, non-​genotypic 
attribute inference

Demographics, name 53

Demographics, surname 54

Face, traits, demographics 44,49,50

Genotype imputation NA 85,86

Research, DTC Genotype imputation Pedigree 64

Genotype  
imputation, genotype 
inference, genotype 
reconstruction

Pedigree 66

Summary Research Membership inference GWAS statistics 56–58,60,96,97

Membership 
inference, genotype 
inference

Machine learning model, 
demographics

61

GWAS statistics, pedigree 106

Membership 
inference, 
non-​genotypic 
attribute inference

Disease status 62

Membership 
inference, re-​ID, 
genotype imputation

GWAS statistics 59

Membership 
inference, 
re-​ID, genotype 
inference, genotype 
reconstruction

GWAS statistics, visual traits 98

Protection Secondary Share Individual Research Generalization RNA sequences 89

Generalization, 
suppression, 
k-​anonymity

NA 88

Masking/hiding, risk 
assessment

Demographics 93

Summary Research Suppression, risk 
assessment

NA 92

Beacons Disease 95

GWAS statistics, pedigree 101

Beacons, differential 
privacy

GWAS statistics 99,100

Beacons, risk 
assessment

GWAS statistics 102

Differential privacy GWAS statistics 103–105,107,108

Generative adversarial 
network

Disease 109

Federated learning GWAS statistics 149

Risk assessment NA 82

www.nature.com/nrg
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Attack or 
protection

Use Data flow Data level setting How attacks or 
protections are 
achieved

Attributes studied other than 
genotypes/how data are used

Refs

Confidentiality

Protection Primary Use Individual Health care Homomorphic 
encryption

Disease susceptibility test 78

Controlled functional 
encryption

Relatedness tests 79

SMC Disease diagnosis 147

Research Homomorphic 
encryption

GWAS computation 142,143

Homomorphic 
encryption, SMC

GWAS computation 141,150

Homomorphic 
encryption, TEE

GWAS computation 154

SMC GWAS computation 145,146

TEE GWAS computation 153,155

Symmetric encryption, 
cryptographic 
hardware

GWAS computation 151

Research, DTC Homomorphic 
encryption

Sequence matching, sequence 
comparison

180

SMC Sequence comparison 148

Fuzzy encryption Relative identification 182

DTC Private set 
intersection protocols

Paternity test, genetic 
compatibility test

181

Store Individual Health care Honey encryption NA 76

Secure file format NA 77

Secondary Share Individual Research Blockchain NA 158

Research, DTC Blockchain NA 157

DTC Blockchain, controlled 
access, homomorphic 
encryption, SMC

NA 161

Summary Research Blockchain Machine learning model 159

Controlled access GWAS statistics 81

Solitude

Attack Secondary Share Individual DTC, forensic Familial search, 
genotype imputation, 
genotype 
reconstruction

Name, e-​mail address 74,75

Forensic Familial search, re-​ID Demographics 72

Familial search,  
re-​ID, genotype 
imputation

Pedigree 73

Individual, 
summary

Research, DTC Non-​genotypic 
attribute inference, 
kin genotype 
reconstruction

Pedigree 63

Attribute inference, 
kin genotype 
reconstruction

Pedigree, disease 65

Protection Primary Collect Individual Forensic Controlled access, 
encryptions

NA 39

Secondary Share Individual DTC, research Masking/hiding, risk 
assessment

Pedigree 196

DTC, direct-​to-​consumer; GWAS, genome-​wide association study; ID, identification; NA, not applicable; SMC, secure multiparty computation; TEE, trusted 
execution environment.

Table 1 (cont.) | A taxonomy of technical research articles on genomic data privacy featured in this Review

Nature Reviews | Genetics
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Homer et al. demonstrated that GWAS summary sta-
tistics are vulnerable to membership inference attacks56, 
whereby it is possible to discover an identified target’s par-
ticipation in the GWAS as part of a potentially sensitive  
group. Although the power of this attack was questioned 
by other researchers57, subsequent studies showed that 
the inference power can be further improved by leverag-
ing statistics based on allele frequencies58, correlations59 
and regression coefficients60. Furthermore, parameters 
in machine learning (ML) models trained on individual-​
level genomic data sets have the potential to disclose 
the genotypes and memberships of the participants61. 
Identifying an individual’s membership in a GWAS data 
set could also reveal the participant’s sensitive clinical 
information such as disease status62.

Reconstruction and familial search. Due to the similarity 
of relatives’ genomic records, even if someone’s genomic 
record has never been shared or even generated, their 
genotypes and predispositions to certain diseases63 can 
be inferred to a certain degree from their relatives’ shared 
genotypes64. Recently, more powerful reconstruction 
attacks have been proposed to infer individuals’ geno-
types and phenotypes from their relatives’ genotypes and 
phenotypes65,66.

In April 2018, the US Federal Bureau of Investigation 
(FBI) used genomic data from a cold case to arrest a sus-
pected serial murderer known as the Golden State Killer. 
In this case, law enforcement officers used crime-​scene 
DNA from the then-​unidentified suspect and uploaded 
the sequence data to GEDmatch, a publicly accessi-
ble genomic database. Through a process known as 
long-​range familial search, whereby relatives can be 
identified based on shared blocks of DNA sequence, 
they found the suspect’s third cousin. From this starting 
point in the suspect’s wider family, law enforcement 
officers were then able to make further enquiries, 
reconstruct a family tree and subsequently trace the 
suspect. Although this case demonstrated the poten-
tial of the forensic use of familial search, now known as 
forensic or investigative genetic genealogy (FGG/IGG), it 
sparked privacy concerns67. Acknowledging these con-
cerns, in May 2019, GEDmatch provided users with the 
opportunity to opt in to allow their data to be used for 
investigating violent crimes68. By May 2020, most (81%) 
of GEDmatch’s 1.4 million users still have not opted in69, 
and users concerned about privacy did delete their data70. 
Potentially, users who uploaded data to GEDmatch 
(or a similar database) and their relatives may still 
be reached out using the long-​range familial search 
technique by anyone (for example, law enforcement 
officers or hackers) who obtained their genomic data 
elsewhere71. A study that received a great deal of atten-
tion predicted that, in a database of 1 million individuals, 
60% of searches using genome data from individuals of 
European descent as search queries will result in finding 
a third cousin or closer match to the targeted individu-
als due to the high number of individuals of European 
ancestry already in the database72. With the help of cor-
relations between two types of genetic markers (that is, 
single-​nucleotide polymorphism (SNP) and STR markers), 
the detection of relatives in genomic databases becomes 

even easier73. Although most records in these databases 
are not disclosed to end-​users, stronger attacks have 
aimed to reconstruct records in a database by uploading 
strategically generated artificial records74,75.

Technical protections against intrusions
Security controls. An important element of protecting 
privacy is preventing access to data by those who are 
not entitled to them. Some attacks targeting genomic 
data can be prevented by applying standard security  
controls (for example, access control27 and crypto
graphic tools31,76–79) and restricting access to selected 
trusted recipients27. For example, in response to attacks 
demonstrated by Gymrek et al.54 and Homer et al.56, 
the US National Institutes of Health (NIH) and the 
Wellcome Trust moved certain demographics about 
the participants80 as well as GWAS summary statistics81 
into access-​controlled databases. Subsequent studies 
found the attack to be less powerful under more realistic 
assumptions82, which contributed to the NIH’s decision 
in 2018 to derestrict public access to genomic summary 
statistics33.

If de-​identified data need to be shared with an 
untrusted third party or the public, the privacy of indi-
viduals to whom these data correspond can be protected 
by perturbing83 (that is, limiting or altering) the data. 
In the following sections and Fig. 2, we illustrate four 
approaches for technical protection that perturb data 
(that is, transformation, aggregation, obfuscation and 
synthetic data generation) with examples in the context 
of genomic data sharing.

Data transformation. Some have suggested that the 
number of released genetic variants should be limited 
because, among millions of SNPs in a person’s genome, 
less than 100 statistically independent SNPs are required 
to identify each person uniquely84. However, protecting 
a genomic data set by hiding a set of genetic variants 
may not be very effective due to correlations among 
genetic variants (known as linkage disequilibrium)85 and 
well-established genotype imputation techniques86.

To thwart re-​identification through linkage in 
general, Sweeney introduced k-​anonymity87, a data 
transformation model, to ensure that each record in a 
released data set is equivalent to no fewer than (k − 1) 
other records with the same quasi-​identifying values 
(that is, those which can be relied upon for linkage). 
Initially developed to address demographics, it was 
subsequently shown that this model could be applied to 
genomic data by generalizing nucleotides into broader 
types based on their biochemical properties to satisfy 
2-​anonymity88. Another countermeasure based on 
k-​anonymity was proposed89 to thwart recent linkage 
attacks using signal profiles90 and raw data from func-
tional genomics (for example, RNA sequences)89. Still, 
given the high dimensionality of genomic data, strategies 
based on generalization or randomization84 are unlikely 
to maintain the data at a level of detail that is useful for 
practical study. Thus, certain legal mechanisms, such 
as the HIPAA Expert Determination pathway, which 
we detail later on, tie the notion of de-​identification 
to a re-​identification risk assessment based on the 

Phenome
The complete set of all 
phenotypes expressed by  
an organism as a result of 
genetic variation in populations.  
A phenotype is an individual’s 
observable traits such as 
height, eye colour, blood type, 
skin colour, hair colour, specific 
personality characteristics or 
specific diseases.

Genome-​wide association 
studies
(GWAS). Observational studies 
in which genetics research 
scientists associate specific 
genetic variations with traits  
of interest, particularly human 
diseases. For human disease 
studies, this method scans the 
genomes from many different 
people and looks for genetic 
markers (for example, single- 
nucleotide polymorphisms) 
that occur more frequently  
in people with a particular 
disease than in people without 
the disease.

Summary statistics
Numbers that give a quick  
and simple description of a  
set of records in a data set  
(for example, mean, median, 
minimum value, maximum 
value and standard deviation). 
A typical example of a 
summary statistic in a GWAS  
is a minor allele frequency.

Forensic or investigative 
genetic genealogy
(FGG/IGG). A process in which 
law enforcement seeks to 
exploit public databases or 
utilize the services of a direct- 
to-​consumer genetic testing 
company for forensic purposes.

Single-​nucleotide 
polymorphism
(SNP). The most common form 
of DNA variation that occurs 
when a single nucleotide (A, T, 
C or G) at a specific position in 
the genome differs sufficiently 
(for example, 1% or more) in a 
species’ population.

Linkage disequilibrium
Non-​random correlations 
among neighbouring alleles. 
This occurs due to infrequent 
recombination events between 
nearby genomic loci, and 
hence the alleles are typically 
co-​inherited by the next 
generation.

Genotype imputation
A process of estimating missing 
genotypes from a haplotype or 
genotype reference panel.
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capabilities of a reasonable data recipient91. For research, 
the utility (or usefulness) of genomic data should be 
maximized when subjecting it to a protection (or trans-
formation) method. As such, Wan et al. demonstrated 
how to balance the tradeoff between utility and privacy 
using models based on game theory92,93.

Data aggregation. Although restricting access to 
data resources, such as the database of genotypes and 
phenotypes (dbGaP)55, reduces privacy risks, it may 
also impede research advances. One potential alterna-
tive is a semi-​trusted registration-​based query system94 
that processes queries internally and releases only sum-
mary results back to the users instead of releasing all 
individual-​level data. For example, Beacon services 
(for example, the Beacon Network), popularized by the 
Global Alliance for Genomics and Health (GA4GH), 
let users query for only one type of information within 
genomic data sets95, namely the presence of alleles. 
Although a membership inference attack against 
Beacon services was demonstrated by Shringarpure 
and Bustamante96 in 2015 and enhanced later97,98, 
the effects of this attack can be mitigated by adding 
noise99,100, imposing query budgets99, adding relatives101 
or strategically changing query responses for a subset of 
genetic variants102.

Data obfuscation. Obfuscating, or adding noise to, sum-
mary statistics based on a computational model, such 
as differential privacy (DP), has been used to counteract 
membership inference attacks103. However, the role of DP 
is limited in protecting GWAS and other data sets104,105 
because a large amount of noise is required to provide 
protection27. Even if aggregate statistics are released with 
significant noise, membership and attribute information 
can still be inferred106. To preserve privacy, the result-
ing utility of the DP model is therefore often extremely 
low61. However, higher data utility could be achieved 
when assuming a weaker adversarial model107 or com-
bining DP with modern cryptographic frameworks  
(for example, homomorphic encryption (HE), which we 
detail later on)108.

Synthetic data generation. Recently, researchers have 
proposed protecting anonymity by generating syn-
thetic genomic data sets using deep learning models 
(for example, generative adversarial networks109,110 or 
restricted Boltzmann machines110). The generated data 
aim to maintain utility by replicating most of the char-
acteristics of the source data and thus have the potential 
to become alternatives for many genomic databases that 
are not publicly available or have accessibility barriers.

Legal implications of data de-​identification and use
The question of whether data are considered identifiable 
or not has important implications for deciding whether 
the individual to whom they pertain must give consent 
for their use. It is important to recognize that the laws 
regarding how genetic and genomic data are handled 
differ among countries. For illustration, we compare and 
contrast how regulations in the EU and the United States 
influence the use of such data.

General Data Protection Regulation. International data 
privacy legislation is likely to alter the landscape of 
data privacy protection in genomics research around 
the world moving forward. The most notable example 
is the EU’s GDPR, which took effect in 2018 and places 
restrictions on entities that handle the personal informa-
tion of citizens of the EU, including genetic information12. 
The regulations grant data subjects access and deletion 
rights, impose security and breach notification require-
ments on entities that handle personal information, and 
place restrictions on the use and sharing of data without 
informed consent. Since the GDPR was enacted, there 
has been heated debate about its impact on the flow 
of data and hence the conduct of genomics research. 
Shabani and Marelli, for example, focus on the GDPR’s 
recognition of the contextual nature of risk, and particu-
larly the risk of re-​identification, which they suggest can 
be ameliorated by compliance with codes of conduct or 
professional society guidance111. Mitchell et al. suggest 
that it may be necessary to have more stringent controls 
as well as to analyse data in place to avoid sharing112. 
In a subsequent news story, Mitchell also pointed out 
the complications posed by the emergence of identified 
ancestry databases113.

The United States has several laws that address the 
issue of identifiability, some of which have been in place 
for many years, and which differ in important ways both 
from each other and from the GDPR113.

United States: HIPAA. One of the most important laws 
governing patient care and biomedical research is the 
HIPAA and its Privacy Rule, which is limited in its 
oversight to data in the possession of three types of cov-
ered entities (that is, health-​care providers, health plans 
and health-​care clearinghouses) as well as the business 
associates of such entities114. HIPAA generally requires 
these entities to obtain patient authorization for uses and 
disclosures of protected health information outside of 
treatment, payment, and health-​care operations and 
conveys access rights to individuals115.

However, the protections provided by HIPAA even 
within ‘covered entities’ contain numerous exceptions116. 
In particular, HIPAA does not require permission to 
use or disclose health information, including genomic 
information, if it has been de-​identified through either 
one of two mechanisms that are colloquially referred to 
as ‘Safe Harbour’ and ‘Expert Determination’. HIPAA 
defines de-​identified data as follows: “Health infor-
mation that does not identify an individual and with 
respect to which there is no reasonable basis to believe 
that the information can be used to identify an individ-
ual is not individually identifiable health information.” 
The Safe Harbour approach requires the removal of an 
enumerated list of 18 explicit identifiers (for example, 
names, social security numbers) and quasi-​identifiers 
(for example, date of birth and 5-​digit ZIP code of resi-
dence)116 as well as an absence of actual knowledge that 
the remaining information could be used alone or in 
combination with other information to identify the indi-
vidual. By contrast, the alternative Expert Determination 
pathway requires the application of statistical and/or  
computational mechanisms to show that the risk of 

Differential privacy
(DP). A privacy protection 
model that publishes summary 
statistics about a data set while 
guaranteeing all potential 
attackers can learn virtually 
nothing more about an 
individual than they would 
learn if that person’s record 
were absent from the data set.

Adversarial model
A model that characterizes 
attackers’ behaviours and 
incentives with certain 
assumptions.
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re-​identification is very small (a term not explicitly 
defined by the law)117. Notably, “biometric identifiers, 
including finger and voice prints”, are listed as one of 
18 identifiers, which could lead to the argument that 
genomic data should be included as well but this issue 
remains unsettled.

United States: Common Rule. The protections afforded 
to genomic information shared with researchers depend 
heavily on the entity carrying out the research and the 
nature of the information (for example, whether it is 
shared in identifiable form or is instead converted into 
de-​identified or aggregated data). Human subjects 
research conducted or funded by agencies within the 
US Department of Health and Human Services (HHS) 
and other federal departments is governed by the Federal 
Policy for the Protection of Human Subjects (that is, the 
Common Rule), which was initially enacted in 1991 
and most recently revised in 2017 (ref.14). Under the 
Common Rule, such research is subject to oversight by 
an Institutional Review Board, and investigators must 
often obtain informed consent before biospecimens and 
the resulting data can be used for research, thereby ena-
bling the individuals to whom they pertain to have some 
control over their use. Among many other elements, the 
regulations require that investigators disclose if they 
plan to use identifiable information118, to share identi-
fiable data and samples broadly119, to return clinically 
relevant research results to participants120, or to perform  
whole-​genome sequencing121.

Much research that utilizes genetic data qualifies as 
minimal risk under the recently revised Common Rule 
and could therefore be eligible for expedited Institutional 
Review Board review122 and waiver of consent123. In 
addition, secondary research involving data that were 
initially collected for some other clinical or research 
purpose and has been transformed into a non-​identified 
state (that is, data that have “been stripped of identifi-
ers such that an investigator cannot readily ascertain a 
human subject’s identity”)124 is currently exempt from 
Common Rule regulations altogether, especially since 
a proposal to consider biospecimens and DNA data 
as identifiable per se was explicitly rejected when the 
Rule was revised in 2017. Thus, informed consent is not 
required for such research, a result that is generally much 
more permissive than the exceptions permitted under 
HIPAA. However, regulations governing identifiability 
may change in the future as federal departments and 
agencies were charged with formally re-​examining the 
definition of ‘identifiable private information’ and ‘iden-
tifiable biospecimen’ over time, expecting that emerging 
technologies, such as whole-​genome sequencing, may 
make genomic data more easily distinguishable.

Other legal issues in the United States. The courts in the 
United States, especially those at the federal level, have 
been reluctant to endow individuals with a right to con-
trol access to biospecimens or resulting data125–127 or to 
extend legal protections to discarded DNA22. Moreover, 
the Genetic Information Nondiscrimination Act of 
2008 (GINA)128, which nominally prohibits genetic-​
based discrimination in the context of health insurance 
and employment, is limited in its scope, applying only 
to asymptomatic individuals and offers no protection 
regarding other types of insurance (for example, life 
and long-​term disability). The Affordable Care Act and 
the Americans with Disabilities Act fill only some of 
these gaps6.

State laws. By contrast, over the years, several US state 
legislatures have enacted laws that convey additional 
rights or protections to individuals with respect to 
genetic information about them. For example, some 
states have deemed genetic information to be the 
property of the individual being tested and/or require 
informed consent for genetic testing129. States may also 
impose security requirements for genetic data or other 
health records, regulate the retention of biospecimens 
and data, or convey additional protections to research 
participants. States, most notably California130,131, 
Virginia132 and Colorado133, have adopted broad data pri-
vacy legislation that provides people with much greater 
control over some uses of information about them with 
yet-​uncertain implications for genomic information in 
a variety of settings, including research134. Other states, 
including Florida135 and New York136, are considering 
legislation as well. The highly influential Uniform Laws 
Commission, which proposes statutes for adoption, 
explicitly defined “genetic sequencing information” as 
sensitive and thus subject to special protections in its 
proposed Uniform Personal Data Protect Act approved 
in July 2021 by the Commission137. These proposed and 

Fig. 2 | Data perturbation approaches for privacy protection in genomic data 
sharing. Each module (or submodule) can work independently to protect data as shown 
by the corresponding data flow. In the transformation module, data can be masked93, 
generalized88 and/or suppressed according to a privacy protection model (for example, 
k-​anonymity)87. In the aggregation module, data can be aggregated to summary 
statistics81 or parameters in a machine learning (ML) model61. In the module of synthetic 
data generation, a synthetic data set can be generated using a generative adversarial 
network (GAN)110. In the obfuscation module, noise can be added to data using a privacy 
protection model (for example, differential privacy)103. All contents in each module  
(or submodule) are examples for illustration purposes only. In the example for the 
generalization submodule, the plus sign represents a generalization of values one and 
two for a genomic attribute. In the example for the submodule of summary statistics,  
the minor allele frequency for each single-​nucleotide polymorphism (SNP) marker is 
computed for each group of individual records. (n represents the number of records  
in the group; xi represents the value of a genomic attribute for the ith record in a group, 
which is the number of minor alleles at a SNP position for a record in this example.)  
In the example for the submodule of ML models, the neural network with three layers has 
21 parameters (that is, 16 weights and 5 biases) that need to be learned. In the example 
for the GAN submodule, X represents the input data set, G represents the generator 
network and D represents the discriminator network. In the example for the reconstruction 
attack in the module of risk assessment91, the attacker tries to reconstruct the original data 
set by linkage and inference66, and the privacy risk is assessed by the data sharer using a 
distance function. In the example for the membership inference attack in the module of 
risk assessment92, the attacker tries to infer the membership of each targeted individual 
by hypothesis testing58, and the privacy risk is assessed by the data sharer using a function 
that measures the test’s accuracy. The reconstruction attack and the membership 
inference attack are used here for illustration purposes only and could be replaced with 
any other attack (for example, a re-identification attack or a familial search attack) or 
some arbitrary combination of attacks. Data can be sequentially protected by multiple 
modules and submodules before the privacy risk is mitigated to an acceptable level  
and finally released. r represents the privacy risk; d represents the distance function;  
f represents the function measures accuracy; θ represents the threshold for the  
privacy risk.

◀
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enacted laws commonly grant more access and correc-
tion rights to individuals and impose more restrictions 
on the use and sharing of personal information without 
informed consent and thus approach more closely the 
structure of the GDPR138. Nonetheless, the differences 
among these statutes themselves and in relation to cur-
rent federal and international law will doubtless further 
complicate compliance.

Genomic privacy in context
Context matters
The primary focus of this Review is addressing the com-
plex ethical, legal and technical challenges that arise in 
protecting privacy in genomic research. Focusing solely 
on genomic research fails to take into account the poten-
tial impact on privacy of the increasing availability of 
such data in other settings. A wide variety of individuals 
and entities now collect, use and share genomic data at an 
unprecedented level. As a result, these data are becoming 
an increasingly viable resource for parties who might 
wish to exploit the data, including not only research-
ers, but also employers, insurers, law enforcement and 
other individuals33, many of whom have garnered much 
more media attention than those conducting biomedical 
investigations. Numerous studies suggest that some peo-
ple are worried about where genomic data about them 
go and how they are used, potentially affecting them in 
ways they neither desire nor expect. In addition to more 
commonly explored fears of discrimination3, this 
information can also redefine family relationships, for 
example, by confirming or disproving paternity, locating 
previously unknown relatives, or identifying anonymous 
gamete donors139. These concerns about use and impact, 
generally couched in terms of desire for genetic privacy, 
may affect individuals’ willingness to undergo clinical 
testing or to participate in research3,140. Such reluctance 
due to privacy concerns, in turn, may exacerbate exist-
ing health disparities and stifle scientific progress. Thus, 
when they design, conduct and discuss their research, 
investigators need to consider how genomic data are 
used and how the type of use affects whether or not the 
data are controlled outside the research setting as well.

Research setting
Technical protections. Researchers often use genomic 
data accompanied by an array of phenotypic and other 
information, which they may obtain from individuals 
directly, through health-​care providers or from third 
parties such as DTC-​GT companies. A researcher may 
also transfer data to third parties for computation or col-
laboration purposes. Many cryptographic tools can be 
deployed to protect such use of data from unauthorized 
access29. Figure 3 illustrates four cryptographic protec-
tion approaches with examples in the context of genomic 
data use cases.

Specifically, Fig. 3a illustrates a use case in which an 
institution that lacks computing capability outsources a 
computation task (for example, GWAS) to a third party 
while keeping the data encrypted. Homomorphic encryption  
(HE) enables computation on encrypted data sets with-
out ever decrypting any specific record and can be  
utilized when the computation of statistics (for example,  

counts141, chi-​square statistics142 and regression 
coefficients143) is outsourced to external data centres or 
public clouds144.

To generate statistically meaningful findings in the 
research setting, GWAS need many thousands of records 
that are often distributed among multiple repositories 
across various institutions, and even across jurisdic-
tions. Secure multiparty computation (SMC), unlike HE, 
enables multiple parties to jointly compute a function of 
their inputs without revealing inputs28, as illustrated in 
Fig. 3b, in which three institutions jointly compute sum-
mary statistics (for example, minor allele frequency) over 
their private data sets. SMC enables the computation of 
GWAS statistics over distributed encrypted reposito-
ries without the local statistics being released145, and it 
can facilitate quality control and population stratification 
correction in large-​scale GWAS146. SMC can also be 
applied to sequence matching in other settings147,148. 
Compared to federated learning, which enables multiple 
parties to jointly train ML models on genomic data sets 
over local statistics149, SMC guarantees a much higher 
security level at the cost of computationally expensive 
encryption operations. To reduce both the computation 
overhead and the communication burden, SMC can be 
combined with HE to support GWAS analyses among a 
large number (for example, 96) of parties150.

Cryptographic hardware can be leveraged to reduce 
the burden of computation (for example, secure count 
queries)151 on encrypted data using HE or SMC152. For 
example, a trusted execution environment based on Intel 
Software Guard Extensions (SGX) isolates the computa-
tion process in a protected enclave on one’s computer153, 
as illustrated in Fig. 3c, in which an institution outsources 
the task of computing summary statistics (for example, 
minor allele frequency) to a third party. Combining 
hardware (for example, Intel SGX) and algorithmic tools 
(for example, HE154 or sketching155 — a data summariza-
tion method) can enable users to perform secure GWAS 
analyses efficiently.

Homomorphic encryption
(HE). A form of encryption  
that permits computations  
on encrypted data without 
revealing the data to any  
of the parties involved in the 
cryptographic protocol.

Secure multiparty 
computation
(SMC). A form of encryption 
that enables multiple parties to 
jointly compute a function of 
their inputs without revealing 
inputs.

Minor allele frequency
The proportion of the second 
most common of two alleles at 
a genomic position in a 
population. An allele 
corresponds to one of two or 
more forms of genetic variant 
at a genetic position. An 
individual inherits two alleles 
for each genetic position,  
one from each parent.

Population stratification
The systematic difference in 
allele frequencies between 
subpopulations of a collection 
of individuals.

Fig. 3 | cryptographic approaches for privacy protection 
in the use of genomic data. a | Homomorphic encryption 
enables computation by a third party on encrypted data 
without decrypting any specific record141. In this instance, 
it is applied to a genome-​wide association study142 and  
a disease susceptibility test78. b | Secure multiparty 
computation enables multiple parties to jointly compute  
a function of their inputs without revealing inputs146. Here, 
three institutions share encrypted data to third parties for 
summary statistics (for example, minor allele frequency 
(MAF)) computing145. c | A trusted execution environment, 
such as Intel Software Guard Extensions (SGX)152, isolates 
the computation process in an encrypted enclave using 
central processing unit (CPU) support so that even malicious 
operating system software cannot see the enclave 
contents153. Here, an institution computes summary 
statistics (for example, MAF) in a secure enclave of a third 
party. d | A blockchain enables encrypted immutable records 
stored on a decentralized network161. Here, the individual 
manages the decryption key using a blockchain while 
sharing encrypted data with researchers32. Avg., average; 
RAM, random-​access memory; SNP, single-​nucleotide 
polymorphism.

▶
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Blockchains can be adopted to incentivize genomic 
data sharing156 while protecting privacy32,157. For exam-
ple, researchers have proposed to use blockchains to 
securely share GWAS data sets158 or parameters of ML 
models trained on genomic data sets159. Figure 3d illus-
trates a distributed data sharing system, in which multi-
ple independent parties hold shares of a split decryption 
key and maintain a blockchain that receives data access 
requests from researchers and consent from individual 
participants32. Combined with HE and SMC, blockchains 
can enable privacy-​preserving analysis on genomic data 
in a personally controlled160 and transparent manner161. 
However, numerous practical challenges with blockchains  
remain, including scalability, efficiency and cost157.

Legal protections. Countries around the world have put 
in place provisions regarding the protection of human 
research participants, which typically address the need to 
weigh the risks and benefits to participants, particularly 
for those who are vulnerable, to assess the scientific merit 
of protocols, to protect privacy and confidentiality, and 
to define the role of oversight by research ethics commit-
tees and the role of informed consent162. Although the 
details differ across countries, the most recent version of 
the Declaration of Helsinki, the foundational document 
for international research ethics, generally requires con-
sent only for “medical research using identifiable human 
material or data”163. The Council for International 
Organizations of Medical Sciences addressed this issue 
in greater depth in Guideline 11 of its most recent 
report in 2016 on International Ethical Guidelines for 
Health-related Research Involving Humans164.

More generally, several international laws influence 
the ability to access or share genomic data. As noted 
above, the GDPR provides individuals with substantial 
control over data about them, typically requiring con-
sent for use and often forbidding the transfer of data to 
countries whose data protections are not substantially 
compliant with the GDPR165. Citing several national 
and individual interests, China heavily regulates when 
human genomic data can leave the country and requires 
governmental approval166,167. India168 and many countries 
in Africa169 have similar practices.

The United States lacks an overarching national data 
privacy policy and does not typically impose limits on 
the export of genomic data170. Moreover, the legal pro-
tections afforded to genomic information shared with 
researchers depend heavily on the entity carrying out 
the research and the nature of the information (for 
example, whether it is shared in identifiable form or is 
instead converted into de-​identified or aggregated data) 
as discussed above.

Non-​research settings
In recent years, the use of genomic data in non-​research 
settings has garnered an enormous amount of pub-
lic attention and can have important implications for 
personal privacy.

Direct-​to-​consumer setting. Millions of US residents 
have undergone DTC-​GT with companies that pur-
port to provide personal information about a variety of 

issues, including health, ancestry, family relationships 
(for example, paternity), and lifestyle and wellness171–173. 
There are numerous media stories about how consum-
ers use these data to reveal biological relationships, 
uses that elicit complex responses139, both positive and 
negative. Some people are pleased to find new relatives 
or to uncover their biological origins, whereas others 
are distressed by the results or by unwanted contact. 
There are, however, virtually no legal constraints on 
how consumers may use these data, although the legal 
consequences that may result from their actions could 
be considerable, including divorce and efforts to avoid 
support for children19.

The companies offering these services generally fall 
outside of the purview of the Common Rule and HIPAA 
(being neither federally funded nor a HIPAA-​covered 
entity, respectively). Instead, the flow of genetic data in the  
DTC setting is governed largely by self-​regulation and  
notice-​and-​choice in the form of privacy policies  
and terms of service172,173. Recent surveys of the pri-
vacy policies and terms of service of DTC-​GT compa-
nies reveal tremendous variability across the industry, 
with many companies failing to meet best practices and 
guidelines concerning privacy, secondary uses of genetic 
information, and sharing of data with third parties172–174.

Although the industry has largely been left to 
self-​regulate, federal agencies have played a limited role 
in shaping policy with respect to DTC-​GT. For exam-
ple, the US Food and Drug Administration has exercised 
oversight over a narrow category of DTC health-​related 
tests, although the trend has been to allow these tests 
to enter the market with little resistance175. The base-
line of protection is provided by the Federal Trade 
Commission, which has the authority to police unfair 
and deceptive activities across all areas of commerce. 
Perhaps hindered by its broad mandate and limited 
resources, the agency to date has only intervened in the 
DTC-​GT space in one case of particularly egregious con-
duct (that is, unsubstantiated health claims coupled with 
a lack of security of consumer personal information, 
including genetic data)176. Instead, the agency has chosen 
to embrace self-​regulation, largely limiting its involve-
ment to the issuance of consumer-​facing bulletins177,178 
about the implications of genetic testing and broad 
guidelines for companies offering DTC-​GT in the form 
of a blog post179. For those who are interested, numerous 
technical strategies exist to permit two users to match 
genome sequences without disclosing their genomes 
by using HE180, private set intersection protocols181 or 
fuzzy encryption182, thereby providing additional privacy 
protections.

Importantly, millions of people have downloaded 
their results from DTC-​GT and posted them on third- 
party databases to facilitate finding relatives or to obtain 
health-​related interpretations. These sites are rarely sub-
ject to any type of regulation beyond what they specify 
in their terms of service173. Moreover, these sites reserve 
the right to change their practices, which may occur as 
a response to public pressure, but may also be due to 
changes in business operations. These are the data that 
facilitate forensic use and are likely to pose the greatest 
potential for re-​identification of genomic data.

Private set intersection
A cryptographic technique that 
allows two parties to compute 
the intersection of their data 
without exposing their raw 
data to the other party.

Fuzzy encryption
In a fuzzy encryption scheme, 
the encrypted data can  
be decrypted by a set of 
similar keys.

www.nature.com/nrg

R e v i e w s



0123456789();: 

Forensic setting. Law enforcement looms large in 
public opinion about genetic data since it may seek to 
access genetic information, an issue that has gained 
intense interest in the wake of high-​profile cold cases 
that were ultimately solved using such information183. 
Over the years, there has also been an effort to expand 
government-​run forensic databases at the federal, 
state and local levels184. The FBI currently maintains a 
nationwide database, the Combined DNA Index System 
(CODIS), that contains the genetic profiles of over 
20 million individuals185 who have been either arrested 
or convicted of a crime as well as over 1 million forensic 
profiles derived from crime scenes186.

Law enforcement may also seek to compel the dis-
closure of genetic information held by an individual or 
an entity such as a health-​care provider, DTC-​GT com-
pany or researcher. A subpoena is generally all that is 
required to compel disclosure of genetic information in 
a patient’s electronic medical record under HIPAA187. 
Genetic data held by researchers may be shielded by 
government-​issued Certificates of Confidentiality, which 
purport to assure participants that such data are immune 
from court orders and outside the reach of law enforce-
ment, but these are issued by default only to research 
funded by the NIH and other agencies within HHS and 
may not protect research data that are placed in partic-
ipants’ electronic health records as well as disclosures 
required by federal, state and local laws188,189.

Furthermore, law enforcement may also seek to 
exploit public databases or utilize the services of a 
DTC-​GT company for forensic genealogy purposes 
in FGG/IGG. To date, law enforcement in the United 
States has largely focused its efforts on publicly acces-
sible databases (for example, GEDmatch)183 and private 
databases held by companies that voluntarily cooperate 
(for example, FamilyTreeDNA)190. For example, law 
enforcement generated leads in dozens of cold cases by 
uploading genetic profiles derived from crime scenes 
to GEDmatch, a public database where individuals can 
upload their DTC-​GT data to learn about where their 
forebears came from and to locate potential genetic rel-
atives. Similarly, FamilyTreeDNA provides law enforce-
ment access to a version of their Family Finder service, 
which, like GEDmatch, allows consumers to upload 
DTC-​GT data to locate potential relatives.

In response to public privacy concerns, both 
GEDmatch and FamilyTreeDNA changed their policies 
to either require consumers to opt in for their genetic 
information to be used for law enforcement matching 
or provide an opportunity to opt out, rather than allow-
ing such searches by default68. This change dramatically 
reduced the pool of users available to law enforce-
ment, leading them to seek court orders to explore 
the entire databases of GEDmatch and Ancestry.com, 
respectively187,191.

In 2019, the US Department of Justice released an 
interim policy statement designed to signal its inten-
tions regarding privacy and the use of FGG/IGG192. 
The interim guidelines, which have not been updated 
since, impose several limitations on federal law enforce-
ment agencies, such as limiting these searches to 
investigations of serious violent crimes (ill-​defined in  

the guidelines), requirements barring deception on the 
part of law enforcement when utilizing a DTC service, 
and requirements that the company seek informed con-
sent from consumers surrounding their cooperation 
with law enforcement192. At least one local district attor-
ney’s office has developed, and voluntarily adopted, sim-
ilar guidelines193. Given the recent emergence of these 
tools, it is perhaps of little surprise that legal regimes are 
evolving in different ways across the country and around 
the world194,195.

At the same time, there has been limited research 
into techniques to mitigate kinship privacy risks196 stem-
ming from the familial genomic searches at the core of  
FGG/IGG. One general approach is to optimize the 
choice of SNPs that are masked to minimize the likeli-
hood of successful inference based on relatives’ genomic 
information196, but little follow-​up work has been done 
on this topic.

Conclusions
As this Review shows, providing appropriate levels of 
privacy for genomic data will require a combination 
of technical and societal solutions that consider the 
context in which the data are applied. Yet, there are 
challenges to achieving such goals. From a technical 
perspective, for instance, it is non-​trivial to move from 
privacy-​enhancing and security-​enhancing technologies 
that are communicated in a paper or tested in a small 
pilot study to a full-​fledged enterprise-​scale solution. 
This challenge is not unique to genomic data as it is a 
dilemma for data more generally and for the application 
domains in which data are applied. In addition, one of 
the core problems is that it is difficult to build privacy 
into infrastructure after it has been deployed. Rather, 
privacy-​by-​design197, whereby the principles of privacy 
are articulated at the outset of a project or the point at 
which data are created and are tailored to the environ-
ment to which they are shared, may provide a more 
systematic and sustainable approach to genomic data 
protection. However, even if the principles are clearly 
articulated, there is no guarantee that the technology 
will support privacy in the long term. For instance, HE, 
one of the technologies emerging for secure computa-
tion over genomic data, is constantly evolving. This may 
make it difficult to compare genomic data encrypted 
at one point in time with genomic data created under 
a more recent version of the technology. Moreover, 
encryption technologies are not necessarily ideal for 
long-​term management of data198, especially since new 
computing technologies, such as cheap cloud computing 
and quantum computing, might make it extremely cheap 
to crack such encryptions.

Beyond technology, numerous social factors, which 
inevitably involve tradeoffs between protection and util-
ity, further complicate efforts to protect genomic privacy. 
Countries, for example, vary dramatically in how much 
control individuals have over how genomic data about 
them are used. Some provide individuals granular con-
trol while others permit use without consent in many 
settings, albeit often with stringent security protections. 
More dramatic is the impact of the growing num-
ber of people who post identified genomic data about 
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themselves so that they can find relatives or connect with 
people who have similar conditions or history. Yet, peo-
ple who share identified data about themselves increase 
the potential to re-​identify other data about them. In 
addition, they also reveal information about their rela-
tives, some of whom might have preferred more privacy. 
These consumer-​created databases, unlike medical and 
research records, frequently have few limitations on use 
by third parties as has been illustrated by the growth 
of forensic genealogy. Deciding how to make tradeoffs 
between protection and use across the entire ecology of 
genomic data flows requires consideration of both the 
value of these interests as well as practicable mechanisms 
of control.

Pressure is growing to protect genomic privacy with 
security-​enhancing technologies and legal regimes for 
use of genomic data. Nonetheless, it seems clear that 
simply giving individuals granular control over genomic 
data that pertain to them, by itself, while attractive to 
some, risks reifying an unwarranted fear of genomics 

and is likely to disrupt a wide array of advances in ways 
that almost surely do not align with the public’s pref-
erences. What may well be needed is a combination 
of notice and some choice, accountable oversight of 
uses, and real penalties — both economic and reputa-
tional — for inflicting harm on individuals and groups. 
An additional requirement could be the creation of 
secure databases for specific purposes (for example, 
research versus ancestry versus criminal justice) with 
privacy-​protecting tools and individual choice for inclu-
sion that is appropriate for each, which can take the form 
of law39 as well as private ordering using tools such as 
data use agreements36. Creating such a complex system 
will not be elegant and will need to evolve in response 
to how new laws and privacy-​enhancing technologies 
affect individuals and groups, but simple solutions will 
not suffice either to protect people and populations from 
harm or to advance knowledge to improve health.
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