
Vanderbilt Law Review Vanderbilt Law Review 

Volume 47 
Issue 1 Issue 1 - January 1994 Article 4 

1-1994 

Reverse Engineering of Software for Interoperability and Analysis Reverse Engineering of Software for Interoperability and Analysis 

S. Carran Daughtrey 

Follow this and additional works at: https://scholarship.law.vanderbilt.edu/vlr 

 Part of the Intellectual Property Law Commons 

Recommended Citation Recommended Citation 
S. Carran Daughtrey, Reverse Engineering of Software for Interoperability and Analysis, 47 Vanderbilt Law 
Review 145 (1994) 
Available at: https://scholarship.law.vanderbilt.edu/vlr/vol47/iss1/4 

This Note is brought to you for free and open access by Scholarship@Vanderbilt Law. It has been accepted for 
inclusion in Vanderbilt Law Review by an authorized editor of Scholarship@Vanderbilt Law. For more information, 
please contact mark.j.williams@vanderbilt.edu. 

https://scholarship.law.vanderbilt.edu/vlr
https://scholarship.law.vanderbilt.edu/vlr/vol47
https://scholarship.law.vanderbilt.edu/vlr/vol47/iss1
https://scholarship.law.vanderbilt.edu/vlr/vol47/iss1/4
https://scholarship.law.vanderbilt.edu/vlr?utm_source=scholarship.law.vanderbilt.edu%2Fvlr%2Fvol47%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=scholarship.law.vanderbilt.edu%2Fvlr%2Fvol47%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.j.williams@vanderbilt.edu


NOTE

Reverse Engineering of Software for
Interoperability and Analysis

1. INTRODUCTION ................................................................... 146
II. CHARACTERISTIC FEATURES OF SOFTWARE ....................... 149

A. General Attributes .................................................. 149
B. Reverse Engineering .............................................. 150

III. INTELLECTUAL PROPERTY LAW FOR SOFTWARE ................ 152
A. Scope of Protection ................................................. 153
B. Reverse Engineering in Intellectual Property Law 156
C. Fair Use Doctrine ................................................... 159

1. Purpose and Character of Use ................... 161
2. Nature of Copyrighted Work ...................... 162
3. Amount and Substantiality of Portion of

W ork Used .................................................. 162
4. Effect of Use on Potential Market .............. 163
5. Public Policy Interests ................................ 163

IV. RECENT COPYRIGHT CASES ADDRESSING REVERSE
ENGINEERING OF SOFTWARE ............................................. 164
A. Sega v. Accolade ..................................................... 166
B. Atari v. Nintendo ................................................... 169

V. REVERSE ENGINEERING OF SOFTWARE FOR THE
PURPOSES OF INTEROPERABILITY AND ANALYSIS .............. 171
A. Reverse Engineering: Why Bother? ....................... 172
B. Interoperability ....................................................... 173

1. The Need for Interoperable Systems ......... 173
2. Legal Acceptance of the Need for

Interoperability .......................................... 175
C. Permitting Analysis Versus Granting Patent-

Like Protection ........................................................ 177
D. Public Policy Concerns ........................................... 179
E. Identifying the Appropriate Paradigm

for Software ............................................................ 181



146 VANDERBILT LAW REVIEW [Vol. 47:145

1. Copyright Protection .................................. 182
2. Sui Generis Protection ............................... 183

VI. CONCLUSION ...................................................................... 186

I. INTRODUCTION

The rapid evolution of computer technology raises difficult
questions about the scope of protection the law should afford computer
programs. Computer programs are uniquely different from traditional
literary works protected by the copyright laws, because they have
machine-like properties, are primarily functional in nature, and
frequently are distributed in a form that humans cannot read.
Despite these differences, however, computer programs have received
protection under the copyright paradigm along with literary and
artistic works.2 The United States historically has employed a highly

1. Copyright laws are grounded in the Constitution. See Patent and Copyright Clause, U.S.
Const. Art. I, § 8, cl. 8 (empowering Congress '[tlo Promote the Progress of Science and useful
Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their
respective Writings and Discoveries"). The laws are designed to balance the policies favoring
protection with those favoring nonprotection. Brief Amicus Curiae of Eleven Copyright Law
Professors 4-5, Sega Enter. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992) (No. 92-15655),
reprinted in 33 Jurimetrics J. 147, 149-50 (1992) (stating that copyright law "represents a balance
between policies favoring protection, such as basic fairness to authors and incentives to
authorship, and policies favoring nonprotection, such as the free flow of knowledge and ideas and
the social advantages resulting from one author's building on the work of another*). See also
Whelan Assoc., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1235 (3d Cir. 1986).

The copyright laws ultimately strive to increase the public's wealth of culture and knowledge
while simultaneously granting certain exclusive rights to authors for a limited time. United
States Copyright Office, Report of the Register of Copyrights on the General Revision of the U.S.
Copyright Law 5 (July 1961) ("Register Report"). See also Copyright Law Revision, H.R. Rep. No.
94-1476, 94th Cong., 2d Sess. 47-50 (1976). A secondary purpose of copyright law is to reward
authors, which in turn stimulates the creation and dissemination of such works. Register Report
at 5-6. See also Mazer v. Stein, 347 U.S. 201, 219 (1954) (stating that "[t]he economic philosophy
behind the clause empowering Congress to grant patents and copyrights is the conviction that
encouragement of individual effort by personal gain is the best way to advance public welfare
through the talents of authors and inventors in 'Science and useful Arts'"); Goldstein v.
California, 412 U.S. 546, 565 (1973); United States v. Paramount Pictures, Inc., 334 U.S. 131, 158
(1948); Melville B. Nimmer, 1 Nimmer on Copyright: A Treatise on the Law of Literature, Musical
and Artistic Property, and the Protection of Ideas § 1.03[A] at 1-31 to -33 (Matthew Bender, 2d ed.
1980) ("Nimmer on Copyright"). According to one commentator, the Copyright Act 17 U.S.C. §§
101 et seq. (1988 & Supp. 1992), seeks to promote authorship rather than publication of new
works. Duncan M. Davidson, Common Law, Uncommon Software, 47 U. Pitt. L. Rev. 1037, 1057
(1986).

For many years the courts enforcing the copyright laws have struggled to establish a delicate
equilibrium between (1) providing authors with incentives to create by affording protection and
(2) limiting the extent of protection to avoid monopolistic effects. Computer Assoc. Int'l, Inc. v.
Altai, Inc., 982 F.2d 693, 696 (2d Cir. 1992). Thus, the copyright laws encourage competitors to
copy the underlying, unprotected ideas of a work as long as they do not copy the protectable
expression. Feist Publications v. Rural Tel. Serv. Co., 111 S. Ct. 1282, 1290 (1991).

2. See 17 U.S.C. §§ 101, 102(a)(1).



1994] REVERSE ENGINEERING

protectionist approach to computer programs,3 as evidenced by early
software4 infringement decisions in which courts slowly expanded
protection by prohibiting copying of not only the literal or tangible
aspects5 of computer programs but also the nonliteral elements.6
Recently, some courts have made an underlying shift in their
interpretation of legal doctrine and policy from a broad standard of
infringement that favors software copyright owners to a more narrow
standard.7

Today's central controversial issue is whether the law should
allow competitors to reverse engineer" a computer program to
ascertain its underlying ideas, interface specifications, and protocols.9

Many computer experts and legal scholars contend that the fair use
doctrine 10 permits the reverse engineering of computer programs.
Others disagree and instead believe that this type of copying always
infringes the rights of the copyright owner.' This discrepancy high-
lights the basic tension between an author's right of control and the

3. J. H. Reichman, Computer Programs as Applied Scientific Know-How: Implications of
Copyright Protection for Commercialized University Research, 42 Vand. L. Rev. 639, 699 n.312
(1989).

4. "Software" is simply another term for a computer program.
5. Literal elements of a computer program are the written words, including the source and

object code. Source code is a human-readable code. See note 16 for a definition of object code.
The nonliteral aspects include non-written elements, such as structure, sequence, organization,
visual displays, and interfaces. That is, nonliteral aspects of computer programs are not reduced
to code. See Computer Assoc., 982 F.2d at 696; Whelan, 797 F.2d at 1248 (stating that nonliteral
elements include "structure, sequence, and organization").

6. See, for example, Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175
(9th Cir. 1989) (protecting nonliteral aspects of computer programs when those components are
expression rather than ideas); Whelan, 797 F.2d at 1248 (providing protection that extended
beyond the literal text of computer programs to the nonliteral structure, sequence, and organiza-
tion); Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1133 (N.D. Cal. 1986)
(protecting structure, sequence, and organization).

7. This shift began with Computer Assoc., 982 F.2d at 693. See also Sega Enter. Ltd. v.
Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992); Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d
832 (Fed. Cir. 1992).

8. "Reverse engineering" is a term of art that refers to the process of going backward from a
finished product to the initial pieces to determine how a company made a product. The Court in
Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 476 (1974), defined reverse engineering as a 'fair
and honest means [ol ... starting with the known product and working backward to divine the
process which aided in its development or manufacture." See notes 26-35 and accompanying text
for a more detailed discussion of reverse engineering of computer programs.

9. See notes 27-28 for an explanation of interface specifications and protocals.
10. See notes 77-112 and accompanying text for a detailed discussion of the fair use

doctrine.
11. See Anthony L. Clapes, Patrick Lynch, and Mark R. Steinberg, Silicon Epics and

Binary Bards: Determining the Proper Scope of Copyright Protection for Computer Programs, 34
U.C.L.A. L. Rev. 1493, 1546 (1987) (discussing the issue of whether copyright law protects against
the copying of literal text only or extends to translation, paraphrasing, and nonliteral dupli-
cation).



VANDERBILT LAW REVIEW

public's right of access to the ideas and functions of a copyrighted
work.

12

The most recent developments in the area of reverse engineer-
ing of computer programs are Sega Enterprises Ltd. v. Accolade, Inc.13
and Atari Games Corp. v. Nintendo of America, Inc.14 In both cases,
the courts radically departed from previous narrow definitions of
infringement that afforded computer programs greater degrees of
protection. The Federal Circuit in Atari rejected the plaintiffs claim
that reverse engineering of a computer program constituted infringe-
ment per se.' 5 In Sega, the Ninth Circuit held that, as a matter of
law, disassembly of the object code16 of a copyrighted computer pro-
gram is fair use when disassembly is the only way to gain access to
ideas and functions embodied in a computer program and when a
legitimate reason exists for gaining access to those ideas and func-
tions.1

7

This Note discusses whether it is appropriate to allow reverse
engineering of computer programs for the purpose of analysis or to
achieve interoperabilityB when the resulting product is created
independently. Part II examines the characteristic features of
computer programs that should influence the method of intellectual
property protection. Part III briefly addresses the scope of copyright
protection, reverse engineering, and the fair use doctrine. Next, this
Note explains the case history of copyright law as applied to reverse
engineering and intermediate copying of computer programs. It also
addresses the fact that courts have had great difficulty distinguishing
the nonliteral components from the literal components of a computer
program. Part IV discusses the Sega and Atari holdings in light of the
historical defenses to the necessary, intermediate copying required to
reverse engineer computer programs. Part V examines the effects of
these recent developments and the future of copyright law for reverse
engineering cases with regard to the nonliteral components of

12. Copyright is a legal device that permits the author to disclose his work to others yet
maintain the right to control the reproduction of the work. Register Report at 3 (cited in note 1).
Copyright, an intangible, incorporeal property right of limited duration, gives the author an
exclusive right to prevent others from reproducing the work. Stephen M. Stewart, International
Copyright and Neighboring Rights § 1.06 at 4 (Butterworth, 1983). Copyright does not, however,
prevent others from using their own expression of the same ideas and concepts. Register Report
at 3.

13. 977 F.2d 1510 (9th Cir. 1992).
14. 975 F.2d 832 (Fed. Cir. 1992).
15. Id. at 844.
16. Object code is computer-readable code that originates as human-readable or source code

and is translated to a format that the computer can use to perform specified tasks.
17. Sega, 977 F.2d at 1527-28.
18. See text accompanying notes 188-99 for a full explanation of interoperability.

148 [Vol. 47:145



REVERSE ENGINEERING

computer programs. Finally, in Part V, this Note explores whether
protection of computer programs should continue to be governed by
copyright law or by a new sui generis law.

II. CHARACTERISTIC FEATURES OF SOFTWARE

Although computer programs currently are considered literary
works and are protected under the copyright paradigm, 19 they have
unique characteristics that make them very different from traditional
literary works.2° In particular, most programs distributed to the
public are in a machine-readable format rather than a human-read-
able form. Additionally, the programs themselves have many
machine-like attributes. The following subparts discuss the relevant
features of computer programs and the method required to change the
machine-readable format to a human-readable one.

A. General Attributes

The Copyright Act classifies computer programs as literary
works.2' A computer program is similar to a literary work because it
consists of words, although these words actually are a list of written
instructions. Unlike traditional literary works, however, these words
or instructions accomplish a task and produce a result. To write a
computer program, a programmer begins with a general design and
eventually writes specific instructions in a higher-level computer lan-
guage.22 The set of instructions written in this human-readable
higher-level language23 is known as source code. Next, the
programmer uses a compiler or interpreter to transform the source

19. See text accompanying notes 36-63 for a discussion of the scope of protection afforded
computer programs.

20. For an excellent explanation of how authors write computer programs and how the
programs work, see generally Randall Davis, The Nature of Software and Its Consequences for
Establishing and Evaluating Similarity, 5 Software L. J. 299 (1992). See also Andrew Johnson-
Laird, Reverse Engineering of Software: Separating Legal Mythology from Actual Technology, 5
Software L. J. 331, 336-38 (1992) (explaining software development and engineering); Pamela
Samuelson, CONTU Reviatek The Case Against Copyright Protection for Computer Programs in
Machine-Readable Form, 1984 Duke L. J. 663, 672-92 (discussing what computer programs are
and how they work).

21. Literary works' are works . . . expressed in words, numbers, or other verbal or
numerical symbols or indicia, regardless of the nature of the material objects.' 17 U.S.C. § 101.
See also Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1249 (3d Cir. 1983).

22. See Whelan Assoc., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1229 (3d Cir. 1986).
See note 23 for examples of high-level languages.

23. Examples of high-level languages include Ada, Basic, C, Cobol, Fortran, and Pascal. See
note 31 for a discussion of the difference between assembly language and high-level languages.

1994]



VANDERBILT LAW REVIEW

code into object code, a series of ones and zeroes that the computer can
interpret and execute (also known as machine-readable code).
Because humans cannot read the object code, this form of a computer
program, unlike most literary works, does not disclose on its face the
ideas underlying the work.

One can read the source code of a computer program from start
to finish, just as one reads a book. Yet when the computer executes
and performs the program, it almost never executes each line once in
consecutive order. Instead, it performs quite differently, possibly
skipping over some code and repeating other code multiple times.2 4

Additionally, software differs from other literary works because
it is essentially functional and not creative. Creative, fanciful parts of
a computer program only decrease the efficiency of the program, thus
lowering its value. By contrast, creativity is highly valued in
traditional literary works. Another distinction is that an engineer can
create hardware 2 5 to perform any task that software performs on a
general purpose computer.

B. Reverse Engineering

Reverse engineering of a computer program essentially is an
analysis of an existing program.26 Vendors usually supply only object
code to customers who purchase their software; a competitor who
wants to create better software or software that is capable of
interacting with the original program, however, must examine
human-readable code to determine how the original software operates
or must study the required interface specifications27 and protocols to
determine how to communicate with that system.28 A programmer
who only has access to object code must reverse engineer that object
code to produce a rough version of the source code. This process,

24. For a discussion of program behavior and static versus dynamic structures, see Davis, 5
Software L. J. at 306-07, 312-13 (cited in note 20).

25. "Hardware refers to the physical components of machines, including computers and
other electronic and electrical devices.

26. For a non-technical explanation of reverse engineering, see Johnson-.Laird, 5 Software
L. J. at 331 (cited in note 20).

27. Interface specifications are the functional requirements that must be present in a
computer program for it to work or communicate in conjunction with other software or hardware.

28. Protocols define the formats, sequences, and timing of messages that are exchanged
between two communicating systems. Michael A. Jacobs, Copyright and Compatibility, 30
Jurimetrics J. 91, 95 (1989). See also Johnson-Laird, 5 Software L. J. at 338-40 (cited in note 20).
For a discussion of interoperability, compatibility, and standardization, see text accompanying
notes 188-99.

150 [Vol. 47:145



REVERSE ENGINEERING

called decompiling 9 or disassembling,O transforms object code back
into a terse, but human-readable, form. To accurately decipher or
decompile a program of any size, the programmer must make an
interim copy of the object code prior to decompilation. The focus of
great debate in recent years is this intermediate copying that almost
always is required for reverse engineering.

Reverse engineering of object code is not a straightforward,
easy process. The source code for a computer program usually is
written in a higher-level computer language that contains labels,
comments, and mnemonic variable names that explain the program's
instructions and identify functions of the code. These utilities are
essential to the computer programmers who develop and maintain the
program. When the source code is compiled or translated into object
code, these labels, comments, and mnemonic variable names are
stripped out of the machine-readable version of the program because
they are useless to the computer. Analyzing this machine-readable or
object code is unreasonably time-consuming, tedious, and error-prone.
The only feasible option, therefore, is to decompile the object code.
When a programmer decompiles or disassembles a computer program
into assembly code31 however, the resulting assembly code lacks any
of the programming utilities or human explanations. That is, the end
product of decompilation is not the original source code but a bare-
bones interpretation of how the computer program operates.32

Reading decompiled code is comparable to reading a novel that has
been stripped of all adjectives, adverbs, articles, and other
explanatory words; reorganized to be completely chronological with no
chapters or paragraphs; and changed so that the characters, places,

29. Decompilation is the opposite of compiling a program; the result of decompiling object
code is a dense, hard-to-read series of cryptic instructions. For an explanation of computer
program decompilation, see generally Johnson-Laird, 5 Software L. J. at 331 (cited in note 20).
Decompilation is one of several ways to reverse engineer a computer program. Jonathan Band
and Laura L.F.H. McDonald, The Fair Use Bill A Funny Thing Happened on the Way to
Congress, 10 Computer L. 9, 16 n.12 (March 1993).

30. Disassembly and decompilation are essentially the same thing. Technically, dissas-
sembly refers to the transfer of code from the machine-readable format to assembly code. See
note 31 for a description of assembly code.

31. Assembly code is a lower-level computer language that programmers can read. Often
high-level languages first are translated to assembly code, and the assembly code is then trans-
lated to object code--that is, the assembly code is an intermediate format. Assembly code differs
from computer to computer, whereas the high-level languages are machine independent. Because
one line of a high-level language generally will translate into multiple lines of assembly code, the
average programmer has more difficulty understanding or deciphering the assembly code.
Therefore, some programmers actually specialize in assembly languages.

32. In fact, true decompilation is impossible because a decompiler never will produce the
original source code.

1994]



VANDERBILT LAW REVIEW

and other nouns are represented by a single letter followed by a single
digit.

After generating a reverse engineered version of a computer
program, even an experienced and patient computer programmer will
need a considerable amount of time to understand how the program
works well enough to identify the interface specifications or how the
program operates. Reverse engineering of software is not a routine
conversion; rather, it is a very laborious, additive process that
requires programmers to supply their own explanatory information
because no higher-level information remains in the executable version
of the program.* Although decompilation produces a list of human-
readable instructions, generating higher levels of knowledge and
understanding about the program requires time, skill, intellectual
contribution, and experience.3 4  This higher understanding is
necessary to discern the interface specifications and protocols essential
for inoperability with another system. Reverse engineering and
analysis of a computer program essentially require the reinvention of
parts of the wheel.35 This process often is more difficult than writing a
program from scratch.

III. INTELLECTUAL PROPERTY LAW FOR SOFTWARE

The Computer Software Copyright Act of 198036 now affords
protection for software under the general copyright law that Congress
originally designed to protect literary and artistic works.37  The
legislative history of the Copyright Act explicitly states that the

33. Johnson-Laird, 5 Software L. J. at 344 (cited in note 20).
34. Id. at 346.
35. See Reichman, 42 Vand. L. Rev. at 701 (cited in note 3); Davidson, 47 U. Pitt. L. Rev. at

1080-81, 1090-94 (cited in note 1).
36. In 1980, Congress adopted the recommendation of the National Commission of New

Technological Uses of Copyrighted Works (CONTU). This amendment made significant changes
to the Copyright Act of 1976, including the addition of the definition of computer programs in 17
U.S.C. § 101. The Copyright Act now defines a computer program as "a set of statements or
instructions to be used directly or indirectly in a computer in order to bring about a certain
result." 17 U.S.C. § 101. In addition, the Act defines literary works as 'works, other than
audiovisual works, expressed in words, numbers, or other verbal or numerical symbols or indicia,
regardless of the nature of the material objects, such as books, periodicals, manuscripts, phonore-
cords, film tapes, disks, or cards, in which they are embodied." Id. See also H.R. Rep. No. 94-1476
at 54 (cited in note 1).

37. The law now includes computer programs in the broad category of protected works.
See, for example, Computer Assoc. Int'l, Inc. v. Altai, Inc., 982 F.2d 693, 702 (2d Cir. 1992);
Whelan Assoc., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1234 (3d Cir. 1986); Apple
Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1247 (3d Cir. 1983). For a history of
the protection of computer programs under copyright law, see Samuelson, 1984 Duke L. J. at 692-
703 (cited in note 20).

[Vol. 47:145



1994] REVERSE ENGINEERING 153

copyright laws protect the expression, of a computer program to the
extent that the expression of original ideas is distinguished from the
ideas themselves.38

A. Scope of Protection

Although computer programs are copyrightable, defining and
detecting infringement poses difficulties.39 A fundamental principle of
copyright law is that expressions, but not ideas, receive protection.40
Distinguishing between ideas and expressions, however, is rarely a
simple task.41 Courts have struggled to delineate the distinction be-
tween ideas and expression in computer programs. Two courts have
held that copyright protection extends beyond the literal elements to
structure, sequence, and organization. 42 More thoughtful courts and
commentators squarely have rejected this type of rule because it cre-
ates ambiguity,4 fails to account for independent creation, and does

38. H.R. Rep. No. 94-1476 at 54 (cited in note 1).
39. The ultimate defense to a copyright infringement action is independent creation.

Reichman, 42 Vand. L. Rev. at 689 (cited in note 3).
40. This basic tenet of copyright law is codified in 17 U.S.C § 102(b), which states: 'In no

case does copyright protection for an original work of authorship extend to any idea, procedure,
process, system, method of operation, concept, principle, or discovery, regardless of the form in
which it is described, explained, illustrated, or embodied in such work.' Baker v. Selden, 101 U.S.
99 (1879), the first case to address the limits of subject matter of copyrighted works, introduced
this axiom. Id. at 102 (stating that '[t]o give to the author of the book an exclusive property in the
art described therein, when no examination of its novelty has ever been officially made, would be
a surprise and a fraud upon the public'). See also Mazer v. Stein, 347 U.S. 201, 217 (1954); Apple
Computer, 714 F.2d at 1250.

41. Judge Learned Hand stated that '[n]obody has ever been able to fix that boundary, and
nobody ever can." Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930). He later
explained that the distinction between ideas and expression is necessarily ad hoc. See Peter Pan
Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2d Cir. 1960). See also Computer Assoc.
Intl, 982 F.2d at 703-06 (discussing the idea-expression dichotomy and applying Judge Hand's
abstraction analysis set forth in Nichols).

42. See Whelan, 797 F.2d at 1236 (holding that only the function or purpose of a utilitarian
work would qualify as an idea and that everything else would be classified as expression); SAS
Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 830 (M.D. Tenn. 1985) (accepting
evidence of literal and organizational similarities in determining that infringment had occurred).
One of the problems with the Whelan decision is that the court mistakenly implies that because
the idea of an efficient organization of a dental laboratory can be expressed with a variety of
program structures, the structure itself is not incident to the idea and, thus, is expression.
Whelan, 797 F.2d at 1240. The fact that something can be done in multiple ways does not make a
work automatically a protected expression.

43. See generally Pamela Samuelson, Computer Programs, User Interfaces, and Section
102(b) of the Copyright Act of 1976 A Critique of Lotus v. Paperback, 55 L. & Contemp. Probs.
311, 322-24 (Spring 1992); John P. Sumner, The Copyright/Patent Interface: Patent Protection for
the Structure of Program Code, 30 Jurimetrics J. 107, 113-14 (1989); Pamela Samuelson,
Reflctions on the State of American Software Copyright Law and the Perils of Teaching It, 13
Colum.-V.L.A. J. L. & Arts 61, 62-65 (1988); J. Dianne Brinson, Copyrighted Software: Separating
the Protected Expression from Unprotected Ideas, A Starting Point, 29 B.C. L. Rev. 803 (1988);



154 VANDERBILT LAW REVIEW [Vol. 47:145

not recognize that software contains many distinct ideas." Further-
more, the former antiquated rule implies that most of a computer
program is expression,45 an absurd proposition because software is
essentially a utilitarian product in which creative embellishment only
degrades performance.

The distinction between ideas and expression is complicated by
the utilitarian nature6 of software that is absent from traditional
subject matter. Traditionally, copyright law has not protected
utilitarian works47 that have a function beyond merely portraying an
appearance or conveying information. 8 Computer programs are
utilitarian because they are capable of directly operating machines.49

By including computer programs in the definition of literary works,
however, Congress ignored this utilitarian aspect.50

As a result, computer programs generally are considered func-
tional works in the copyright context. 51 Historically, courts have af-
forded functional works a lesser degree of protection 52 than creative

Steven R. Englund, Note, Idea, Process, or Protected Expression?: Determining the Scope of
Copyright Protection of the Structure of Computer Programs, 88 Mich. L. Rev. 866 (1990).

44. See Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832,839 (Fed. Cir. 1992).
45. See Synercom Technology, Inc. v. University Computing Co., 462 F. Supp. 1003, 1013

(N.D. Tex. 1978) (asking what separable idea is being expressed if sequencing and ordering are
expression).

46. See SAS Inst., 605 F. Supp. at 829.
47. See 17 U.S.C. §§ 101, 113; Baker v. Selden, 101 U.S. 99 (1879).
48. 17 U.S.C. § 101. Copyright extends to artistic features of utilitarian works only if a

court can identify the artistic features separately from the utilitarian aspects of the work. Id.
(defining pictorial, graphic, and sculptural works); Mazer, 347 U.S. at 218. See also Reichman, 42
Vand. L. Rev. at 693 n.288 (cited in note 3) (discussing the implications of Baker v. Selden).

49. See text accompanying notes 19-35 for a discussion of the characteristics of computer
programs. See also Samuelson, 1984 Duke L. J. at 727-49 (cited in note 20) (discussing the
utilitarian nature of computer programs).

50. J. H. Reichman, Design Protection and the New Technologies: The United States
Experience in a Transnational Perspective, 19 U. Balt. L. Rev. 6, 12 (1989). Perhaps Congress saw
computer programs as works that convey information. Id. at 12 n.23. In contrast, Congress may
have extended copyright protection to the machine-readable form of computer programs because
the CONTU Report failed to advise Congress of the utilitarian nature of computer programs and
the serious changes to copyright law that could result from this action. Pamela Samuelson,
Creating a New Kind of Intellectual Property: Applying the Lessons of the Chip Law to Computer
Programs, 70 Minn. L. Rev. 471, 474-75 (1985).

51. Paul Goldstein, 2 Copyright § 8.5 at 116 (Little, Brown, 1989). For a general
explanation of functional works and the differences between functional and nonfunctional works,
see Goldstein, 1 Copyright § 2.15 at 195-98.

52. LaST Frontier, Conference Report on Copyright Protection of Computer Software, 30
Jurimetrics J. 15, 18-19 (1989) ("LaST Frontier Report"). The scope of copyright protection for
functional works is "thin" or narrow. The Supreme Court most recently enunciated the doctrine
of thin copyright for functional works in Feist Publications, Inc. v. Rural Tel. Serv. Co., 111 S. Ct.
1282, 1289-91 (1991). See also Goldstein, 1 Copyright § 2.15 at 197; H.R. Rep. No. 94-1476 at 53-
57 (cited in note 1); J.H. Reichman, Goldstein on Copyright Law: A Realist's Approach to a
Technological Age, 43 Stan. L. Rev. 943, 970-73 (1991) (noting that the CONTU Report neglected
to discuss the thin protection traditionally afforded to functional works).



1994] REVERSE ENGINEERING 155

works based on Section 102(b) of the Copyright Act4 which states
that systems, like abstract ideas, are not protectable.15 Overprotection
of functional works makes them look more like patentable than copy-
rightable works.5 Although some courts and experts have adopted a
highly protectionist standard for computer programs,5 7 others have
criticized this narrow view.58

Another way that computer programs are different from other
copyrightable subject matter is that it usually is not feasible to
examine the unprotected elements of a computer program in its

53. See Reichman, 42 Vand. L. Rev. at 693-95 n.288 (cited in note 3). Recently, one court
failed to provide thin protection for a functional writing as recognized by the Copyright Act, Baker
v. Selden, and other functional work cases. See Lotus Dev. Corp. v. Paperback Software Intl, 740
F. Supp. 37 (). Mass. 1990). See also Samuelson, 55 L. & Contemp. Probs. at 351 (cited in note
43).

54. 17 U.S.C. § 102(b).
55. See Samuelson, 55 L. & Contemp. Probs. at 324 n.61 (cited in note 43), for a compre-

hensive list of examples.
56. See Part V.A.2 for a more detailed explanation of how overprotection of functional

works begins to resemble patent-like protection.
57. For example, the Whelan court held that the purpose or function of a computer program

is the work's idea, and everything not necessary to that purpose or function is part of the
expression. Whelan, 797 F.2d at 1236. The court also found that although computer programs
are essentially utilitarian in nature, the law should not afford computer programs any less
protection than traditional literary works. Id. at 1240. See also Baker v. Selden, 101 U.S. 99
(1879); Bibbero Sys., Inc. v. Colwell Sys., Inc., 893 F.2d 1104 (9th Cir. 1990).

Arguably, a user interface is merely an idea, and only the code implementing the interface is
copyrightable expression. Given this view, no copyright infringement occurs if one only copies the
functional aspects of an interface. Samuelson, 55 L. & Contemp. Probs. at 336 n. 112 (cited in
note 43). '[The mere existence of alternatives does not demonstrate that a nonliteral aspect of a
computer program is 'expressive.'" Id. at 323. Others feel that a user interface is a valuable
nonliteral element of copyrighted computer programs and copying is, thus, an infringement.
Samuelson takes this to mean that such reasoning does not allow the public to make products
that have compatible user interfaces. Id. at 336 n.112. See also Jacobs, 30 Jurimetrics J. at 91
(cited in note 28); Dennis S. Karjala, Copyright, Computer Software, and the New Protectionism,
28 Jurimetrics J. 33 (1987); William T. Lake, John H. Harwood, II, and Thomas P. Olson,
Tampering with Fundamentals: A Critique of Proposed Changes in EC Software Protection, 6
Computer L. 1 (Dec. 1989). One commentator claims that the copyright law allows Sega to select
its own business strategy by choosing to license its interfaces or make them available for
competitors to copy. Anthony L. Clapes, Sega v. Accolade and the Intellectual Property/Antitrust
Interface, 15 Computer L. Rep. 270, 273 (1992).

58. Professor Reichman has suggested that because independently created functional works
may not contain the author's personality, some courts require a stronger showing of creativity.
Reichman, 42 Vand. L. Rev. at 684 (cited in note 3). In fact, Reichman advocates that courts
should require quantitative creativity in computer programs to establish originality. Id. at 688.

Professor Samuelson has criticized Whelan for its narrow definition of what copyright law
considers to be an 'idea in a computer program because the court presumed there was only one
idea per computer program rather than many unprotectable elements. Samuelson, 55 L. &
Contemp. Probs. at 322 (cited in note 43). In reality, a computer program consists of numerous
subprograms that are programs themselves. The Whelan court also failed to recognize the §
102(b) prohibition against protection of elements such as processes, procedures, systems, and
methods of operation, even though they are contained in the body of a copyrighted work. Id. at
322-23.



VANDERBILT LAW REVIEW [Vol. 47:145

distributed executable form.5
1 Someone who wants to discern the

underlying ideas of a program must reverse engineer the program to
create a human-readable form.60 As indicated in Section 102(a), the
Copyright Act provides copyright protection to original works "fixed in
any tangible medium of expression" that can be perceived "directly or
with the aid of a machine or device." 61. Although copyright protection
does not depend on a human's ability to read or understand a
copyrighted work 62 the primary goal of copyright law is to give the
public a right to access all ideas embodied in the copyrighted work.6 3

To maintain consistency with the public access goal, interested
persons in theory should have access to the underlying ideas of a
computer program.

B. Reverse Engineering in Intellectual Property Law

The laws regarding reverse engineering derive from trade
secret laws, 6 4 which traditionally allowed competitors to start with the
known product and work backward to determine the process used to
develop or manufacture the product.6 5  Reverse engineering is
standard industry practice in many fields, including the computer
industry.6 6  Under the patent paradigm, "reverse engineering is
permissible for unpatented technologies. 67  In addition, the

59. See text accompanying notes 21-25.
60. See text accompanying notes 26-35.
61. 17 U.S.C. § 102(a).
62. In White-Smith Music Publishing Co. v. Apollo Co., 209 U.S. 1 (1907), the Supreme

Court held that musical compositions embodied in player piano rolls were not copies. Id. at 18.
Some courts have indicated that the 1976 Copyright Act eliminated this human perceptibility
requirement. See, for example, Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240,
1248 (3d Cir. 1983); SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 829 (M.D.
Tenn. 1985) (holding that using unauthorized human-readable versions of programs as a step in
creating a competing program is a copyright infringement). See also 1 Nimmer on Copyright §
2.03[BI[1] at 2-28 to -29 (cited in note 1).

63. See note 1.
64. See Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 489-90 (1974).
65. The Kewanee Court defined reverse engineering as a "fair and honest means [oi] ...

starting with the known product and working backward to divine the process which aided in its
development or manufacture." Id. at 476.

66. See, for example, E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp. 1485, 1501-02
n. 17 (D. Minn. 1985) (identifying and endorsing reverse engineering of a computer program as
standard practice in the industry). The court found infringement because the defendant copied
the plaintiffs protected expression verbatim. Id. at 1503.

Note that when the Computer Software Copyright Act of 1980 was passed, software was less
complex, compilers and decompilers were new, and reverse engineering was hard to do. Thus,
reverse engineering was not an issue. See note 36 and accompanying text for discussion of the
1980 Copyright Act.

67. Competitors may reverse engineer works not protected by federal patent law. See, for
example, Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 160-61 (1989) (holding that
reverse engineering is beneficial because of its innovative character); Sears, Roebuck & Co. v.

156



1994] REVERSE ENGINEERING 157

Semiconductor Protection Act of 198468 expressly permits reverse
engineering provided that the resulting product reflects a reasonable
amount of investment and effort.69

The copyright paradigm permits reverse engineering in two
cases. First, under Section 113(b) of the Copyright Act, intermediate
copies of three-dimensional utilitarian articles may be made for the
purpose of studying and analyzing the utilitarian features of the ob-
ject.70 Second, the exemption under Section 117 permits the owner of
a copy of a computer program to make another copy or adapt the pro-
gram for the purposes of archiving or using the program.7'

Outside of the established exemptions, a programmer generally
decompiles computer object code for one of three reasons: to analyze
the underlying functionality of a program, to make one system com-
patible with another, or to pirate software. Some courts 72 and many
commentators73 agree that reverse engineering of computer programs

Stiffel Co., 376 U.S. 225, 232-33 (1964); Compco Corp. v. Day-Brite Lighting, Inc., 376 U.S. 234,
237-38 (1964); Secure Serv. Technology, Inc. v. Time & Space Processing, Inc., 722 F. Supp. 1354,
1361 (E.D. Va. 1989) (holding that trade secret law permits reverse engineering of a facsimile
machine for the purpose of making an interoperable facsimile machine).

68. 17 U.S.C. §§ 901 et seq. (1988 & Supp. 1992).
69. 17 U.S.C. § 906. See generally Leo J. Raskind, Reverse Engineering, Unfair Competi-

tion, and Fair Use, 70 Minn. L. Rev. 385 (1985).
70. 17 U.S.C. § 113(b). See generally J. H. Reichman, Design Protection in Domestic and

Foreign Copyright Law: From the Berne Revision of 1948 to the Copyright Act of 1976, 1983 Duke
L. J. 1143, 1201-13 (explaining the evolution of § 113(b)).

71. 17 U.S.C. § 117 states:
Notwithstanding the provisions of section 106, it is not an infringement for the owner of a
copy of a computer program to make or authorize the making of another copy or adapta-
tion of that computer program provided: (1) that such new a [sic] copy or adaptation is
created as an essential step in the utilization of the computer program in conjunction with
a machine and that it is used in no other manner, or (2) that such new copy or adaptation
is for archival purposes only and that all archival copies are destroyed in the event that
continued possession of the computer program should cease to be rightful....

See also Vault Corp. v. Quaid Software Ltd., 847 F.2d 255,261 (5th Cir. 1988).
72. See, for example, NEC Corp. v. Intel Corp., 10 U.S.P.Q.2d 1177, 1184 (N.D. Cal. 1989)

(recognizing that one could disassemble microcode and use the resulting information to develop
separate microcode without infringement). Moreover, in its corrected brief to the district court,
Accolade asserted that in the more than ninety published opinions addressing reverse
engineering, no court has found reverse engineering of software to be improper because computer
programs must be copied and disassembled in order to read and understand them. Corrected
Opposition of Accolade, Inc. to Sega Enterprises Ltd.'s Motion for Preliminary Injunction 13, Sega
Enter. Ltd. v. Accolade, Inc., 785 F. Supp. 1392 (N.D. Cal. 1992) (No. C91-03871 BAC), reprinted
in 15 Computer L. Rep. 592, 601 (1992). See generally text accompanying notes 62-63 for a
discussion of the public access goal. For the public to access the unprotectable aspects of a work,
that work must exist in a human-readable form.

73. See, for example, Brief Amicus Curiae at 4-28, reprinted in 33 Jurimetrics J. at 149-62
(cited in note 1) (discussing decompilation of software for analysis purposes only); Samuelson, 70
Minn. L. Rev. at 524 (cited in note 50) (asserting that courts should allow users to copy a com-
puter program for the purpose of reverse engineering, as in semiconductor chip law); Goldstein,
Copyright § 5.2.1.4 at 116-23 (Supp. 1993) (cited in note 51) (utilizing the managed copying idea
and the fair use doctrine to support reverse engineering of software); Raskind, 70 Minn. L. Rev. at
389 (cited in note 69) (justifying reverse engineering by distinguishing between piracy and



158 VANDERBILT LAWREVIEW [Vol. 47:145

does not constitute copyright infringement if the final version is not
substantially similar to the original copyrighted version.7 4 Others
believe the courts should use this substantial similarity test only if no
direct evidence of copying exists.75 Few courts have focused more

legitimate competition); Reichman, 42 Vand. L. Rev. at 702 (cited in note 3) (explaining that
reverse engineering is not copyright infringement when a new product incorporates only the ideas
of the original program).

In his discussion of nonliteral similarity, Nimmer implies that the Copyright Act does not
permit reverse engineering of computer programs. 3 Nimmer on Copyright § 13.03[A][1] at 13-29
to -46 (cited in note 1). Clapes argues that disassembly is an attempt to discover information that
one has withheld purposefully and lawfully from competitors. Clapes, 15 Computer L. Rep. at 272
(cited in note 57). Evidently, the maxi.protectionist view is that copyright law should protect
translations, paraphrasing, and nonliteral copying. See Pamela Samuelson and Robert J.
Glushko, Comparing the Views of Lawyers and User Interface Designers on the Software
Copyright "Look and Feel" Lawsuits, 30 Jurimetrics J. 121, 135-36 (1989). Other commentators
believe that reverse engineering is a low-cost, quick method of eliminating all lead time and that
one easily can alter a computer program so that it will not resemble the original program even
though it is a copy. See Steering Committee, Intellectual Property Issues in Software 78 (Natl
Academy, 1991). One scholar suggests that the large software producers provoke the reverse
engineering debate to improve their competitive position, even though many early and current
products contain information obtained through reverse engineering. See Johnson-Laird, 5
Software L. J. at 354 (cited in note 20).

74. See v. Durang, 711 F.2d 141, 142 (9th Cir. 1983) (stating that '[c]opying deleted or so
distinguished as to be unrecognizable is not copying"); NEC Corp., 10 U.S.P.Q.2d at 1184 (holding
that there was no copyright infringement because the final version was not substantially similar
to the original copyrighted program, even though the defendant had disassembled the plaintiffs
code and made a direct copy); Hubco Data Prod. Corp. v. Management Assistance, Inc., 219
U.S.P.Q. 450, 455-56 (D. Idaho 1983) (holding that the reverse engineering was itself legal, but
that the wholesale copying and resale of the object code constituted copyright infringement);
Vault Corp., 847 F.2d at 261 (strengthening the nmking of copies for reverse engineering by
overruling a state statute that declared reverse engineering to contravene the copyright law,
stating that the computer program owner was permitted to copy a program if it was "created as
an essential step in the utilization of the computer program," and explaining that "Section 117(1)
contains no language to suggest that the copy it permits must be employed for a use intended by
the copyright owner, and, absent clear congressional guidance to the contrary, we refuse to read
such limiting language into this exception").

In Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173 (9th Cir. 1989), the
court held that the lower court did not abuse its discretion in a copyrighted software infringement
case when it excluded evidence of the final version of the code. Id. at 1177. This holding does not
mean, however, that it is unnecessary to review the final version of a defendant's code in a
copyright infringement case. See Richard H. Stern, Sega Enterprises, Ltd. v. Accolade, Inc.: No
Accolades for an Ill-Conceived Analysis of Software Copyright Infringement and Fair Use, 15
Computer L. Rep. 263, 264 (1992). Furthermore, Johnson Controls did not involve reverse
engineering of object code because the defendant had direct access to the source code. Johnson
Controls, 886 F.2d at 1176.

For scholarly agreement that reverse engineering is permissible absent substantial similarity,
see LaST Frontier Report, 30 Jurimetrics J. at 24-25 (cited in note 52); Goldstein, Copyright §
5.2.1.4 at 116-23 (Supp. 1993) (cited in note 51). In fact, one commentator believes that sufficient
precedent exists to indicate that a work infringes a copyrighted work only if the subsequent work
contains a substantial amount of the protected expression of the original, without regard to
earlier versions of the subsequent work. See Stern, 15 Computer L. Rep. at 265.

75. Appellees Brief 29-30, Sega Enter. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992)
(No. 92-15655), reprinted in 15 Computer L. Rep. 1004, 1018-19 (1992). See also Johnson
Controls, 886 F.2d at 1176 (stating that "[c]opying can be shown by circumstantial evidence of
access to the copyrighted work, and substantial similarity between the copyrighted work and the
infringer's work"); Atari, Inc. v. North Am. Philips Consumer Elec. Corp., 672 F.2d 607, 614 (7th



1994] REVERSE ENGINEERING 159

intently on the intermediate copying than on the degree of similarity
of the final product to the original copyrighted work; however, one
court that has examined the intermediate copying issue found that it
was fair use under certain circumstances. 76

C. Fair Use Doctrine

The doctrine of fair use is a recognized defense to copyright
infringement at common law. This judicial doctrine is a significant
and well-established limitation on the exclusive right of copyright
owners recognized by Congress 77 and is codified in Section 107 of the
Copyright Act of 1976.78 Congress permitted courts to adapt the fair

Cir. 1982); Novelty Textile Mills, Inc. v. Joan Fabrics Corp., 558 F.2d 1090, 1092 (2d Cir. 1977);
Arnstein v. Porter, 154 F.2d 464, 468 (2d Cir. 1946).

76. See Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 843 (Fed. Cir. 1992)
(holding that "[w]hen the nature of a work requires intermediate copying to understand the ideas
and processes in a copyrighted work, that nature supports a fair use for intermediate copying.
Thus reverse engineering object code to discern the unprotectable ideas in a computer program is
a fair use"). For cases in which courts found infringement without analyzing the possible
lawfulness of intermediate copying under certain circumstances, see Johnson Controls, 886 F.2d
at 1176-77; Walt Disney Prod. v. Filmation Assocs., 628 F. Supp. 871, 876-77 (C.D. Cal. 1986); SAS
Inst., 605 F. Supp. at 828-29; Hubco Data, 219 U.S.P.Q. at 455-56; Walker v. University Books,
Inc., 602 F.2d 859, 862-64 (9th Cir. 1979) (holding that infringement could be based on blueprints
for I-Ching cards, but remanding on the substantial similarity issue). For cases in which the
courts did not find infringement based not on the presence of intermediate copying as an initial
step in software development but on the lack of substantial similarity, see NEC Corp., 10
U.S.P.Q.2d at 1183-84 (finding that the common law permitted disassembly of copyrighted
microcode under copyright law and that intermediate copying did not constitute infringement
because the final version and the original copyrighted version were not substantially similar); E.F.
Johnson Co. v. Uniden Corp. of America, 623 F. Supp. 1485, 1501-02 n.17 (D. Minn. 1985); See, 711
F.2d at 143. Compare Computer Assoc. Intl, Inc. v. Altai, Inc., 982 F.2d 693, 706-12 (2d Cir. 1992)
(refusing to treat earlier and later versions of a computer program as a single unit for purposes of
determining copyright liability, even though the earlier version was infringing and the later one
revised the earlier version).

77. H.R. Rep. No. 94-1476 at 65 (cited in note 1). Courts have used the Report of the House
Committee on the Judiciary as authority for interpreting Congressional intent for enacting the
1976 Copyright Act. See, for example, Feist Publications, Inc. v. Rural Tel. Ser. Co., 111 S. Ct.
1282, 1293-95 (1991); Community for Creative Non-Violence v. Reid, 490 U.S. 730, 747, 749 n.15
(1988); Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 167-68 (1988); Harper &
Row, Publishers, Inc. v. National Enter., 471 U.S. 539, 549, 552-55 (1984); National Car Rental,
Inc. v. Computer Assoc. Int7, Inc., 991 F.2d 426, 433 (8th Cir. 1993); Forward v. Thorogood, 985
F.2d 604, 607 (1st Cir. 1993); Atari Games, 975 F.2d at 840; Broadcast Music, Inc. v. Claire's
Boutiques, Inc., 949 F.2d 1482, 1488 (7th Cir. 1991); Miss America Org. v. Mattel, Inc., 945 F.2d at
536, 54 (2d Cir. 1991); National Broadcasting Co., Inc. v. Satellite Broadcast Networks, 940 F.2d
1467, 1469 n.3 (11th Cir. 1991); Ford Motor Co. v. Summit Motor Prod., Inc., 930 F.2d 277, 299 (3d
Cir. 1991). By incorporating the fair use doctrine into the Copyright Act of 1976, Congress
recognized "one of the most important and well-established limitations on the exclusive right of
copyright owners." H.R. Rep. No. 94-1476 at 65.

78. 17 U.S.C. § 107. The doctrine allows federal courts to "provide relief from 'copyright
abuse' by copyright owners toward non-owners of a copy." Stephen Kyle Tapp and Daniel E.
Wanat, Computer Software Copyright Issues: Section 117 and Fair Use, 22 Memphis St. U. L.
Rev. 197, 272 (1992). The doctrine is a defense to an otherwise valid claim of copyright
infringement. Sega, 977 F.2d at 1521. The fair use doctrine is a mixed question of law and fact:



160 VANDERBILTLAWREVIEW [Vol. 47:145

use doctrine to particular situations on a case-by-case basis during
periods of rapid technological change. 79 This judicial freedom to adapt
the doctrine to technological change also applies to infringing com-
puter programs.8

Courts generally have taken two approaches to the fair use
doctrine. The narrow view is that fair use is "an equitable rule of
reason"81-a privilege used to excuse a technical violation of the exclu-
sive right of an author.8 2 The broader view is that the fair use doc-
trine embodies the public policy of ensuring access to information that
actually exists outside the realm of copyright.8 These two views
demonstrate the basic doctrinal tension between control and
accessibility.

Section 107 of the Copyright Act enumerates four factors for a
court to consider when determining whether a use of copyrighted
material is a fair one:

"[W]here the district court has found facts sufficient to evaluate each of the statutory factors,* the
appellate court may determine whether fair use has occurred as a matter of law. Elamere Music,
Inc. v. Natl Broadcasting Co., Inc., 482 F. Supp. 741, 747 (S.D.N.Y. 1980), aff'd, 623 F.2d 252 (2d
Cir. 1980).

The first enunciation of the principles of this doctrine in United States copyright law was in
Folsom v. Marsh, 9 F. Cas. 342, 348 (C.C.D. Mass. 1841) (No. 4901) (stating that '[i]f so much is
taken, that the value of the original is sensibly diminished, or the labors of the original author are
substantially to an injurious extent appropriated by another, that is sufficient, in point of law, to
constitute a piracy pro tanto"). Subsequent fair use decisions developed the theory. See, for
example, Rosemont Enter., Inc. v. Random House, Inc., 366 F.2d 303, 307 (2d Cir. 1966) (stating
that a fundamental justification for fair use existed in the constitutional purpose for copyright:
'To Promote the Progress of Science and the Useful Arts'). The courts have varied widely in
recent years with regard to the fair use doctrine. See, for example, New Era Publications, Intl v.
Henry Holt & Co., Inc., 873 F.2d 576, 583-85 (2d Cir. 1989) (holding it was not fair use to
reproduce unpublished writings of the scientology founder); Salinger v. Random House, Inc., 811
F.2d 90, 100 (2d Cir. 1987) (holding it was not fair use to use unpublished letters in a biography);
Hustler Magazine, Inc. v. Moral Majority, Inc., 796 F.2d 1148, 1151-56 (9th Cir. 1986) (holding
that it was fair use when a minister used, without authority, a copy of a parody for fundraising
and rebuttal); Harper & Row, 471 U.S. at 560-69 (holding that substantial copying of an
unpublished article was not fair use); Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417,
447-50 (1984) (holding that home videotaping is fair use).

79. "The bill endorses the purpose and general scope of the judicial doctrine of fair use, but
there is no disposition to freeze the doctrine in the statute, especially during a period of rapid
technological change. Beyond a very broad statutory explanation of what fair use is and some of
the criteria applicable to it, the courts must be free to adapt the doctrine to particular situations
on a case-by-case basis.' H.R. Rep. No. 94-1476 (cited in note 1).

80. Tapp and Wanat, 22 Memphis St. U. L. Rev. at 259-60 (cited in note 78).
81. Id. at 259. See also Harper & Row, 471 U.S. at 560 (quoting H.R. Rep. No. 94-1476 at

65).
82. 3 Nimmer on Copyright § 13.05 at 13-79 to -82 (cited in note 1). See also Benny v.

Loew's, Inc., 239 F.2d 532, 536-37 (9th Cir. 1956) (holding that a television show parody of a
successful movie and play was not fair use because the original was copied practically verbatim,
although the actors created burlesque).

83. See Rosemont Enter., 366 F.2d at 306-11 (holding that publication of an unauthorized bi-
ography was outside the gambit of the 'commercial use' contemplated by the 'right of publicity').



REVERSE ENGINEERING

(1) the purpose and character of the use, including whether such use is of a
commercial nature or is for nonprofit educational purposes; (2) the nature of
the copyrighted work; (3) the amount and substantiality of the portion used in
relation to the copyrighted work as a whole; and (4) the effect of the use upon
the potential market for or value of the copyrighted work. 4

These factors, however, function only as guides, not exclusive require-
ments.8 5

1. Purpose and Character of Use

The first criterion, known as the purpose test, requires a court
to consider the purpose and character of the use, particularly whether
the questioned usage is of a commercial nature or is for nonprofit
educational purposesm In Sony Corp. of America v. Universal City
Studios, Inc.,"7 the Supreme Court established two rebuttable
presumptions under the purpose test: commercial use is treated
differently from noncommercial use and is presumed unfair, and every
commercial use results in harm to the potential market for the
copyrighted work.88 The Supreme Court later rejected the implication
in Sony that noncommercial use was presumptively fair,89 but
consistently has held that commercial use tends to weigh against a
finding of fair use.9 The Court stated that the distinction between
profit and non-profit usage is not whether the sole purpose is for
monetary gain, but whether the copier stands to profit by exploiting
the copyrighted material without paying the customary price to the
copyright owner.91

84. 17 U.S.C. § 107.
85. H.R. Rep. No. 94-1476 at 65-66 (cited in note 1).
86. 17 U.S.C. § 107(1).
87 464 U.S. 417 (1984).
88. Id. at 449,451. The Court specifically stated: "If the Betamax were used to make copies

for a commercial or profit-making purpose, such use would presumptively be unfair.... Thus,
although every commercial use of copyrighted material is presumptively an unfair exploitation of
the monopoly privilege that belongs to the owner of the copyright, noncommercial uses are a
different matter." Id.

89. Harper & Row, 471 U.S. at 561.
90. Id. at 562. See also Sony, 464 U.S. at 451 (stating that "every commercial use of

copyrighted material is presumptively an unfair exploitation of the monopoly privilege that
belongs to the owner of the copyright").

91. Harper & Row, 471 U.S. at 562. See also Roy Export Co. Establishment v. Columbia
Broadcasting Sys., Inc., 503 F. Supp. 1137, 1144 (S.D.N.Y. 1980); 3 Nimmer on Copyright §
13.05[A][1] at 13-88.1 & n.25.3 (cited in note 1).

1994]



VANDERBILT LAW REVIEW

2. Nature of Copyrighted Work

The nature test requires the court to examine the nature of the
copyrighted work.92 Generally, courts uphold the fair use defense
more often with factual works than with entertainment works.93 The
fair use defense, however, fails when the use interferes with the
author's right to control the first publication of the work. 4

3. Amount and Substantiality of Portion of Work Used

To apply the substantiality test, a court compares the amount
and substantiality of the copied material with the entire copyrighted
work.9 5 Two prongs comprise this test. First, the court must examine
the qualitative substantiality, which includes the content of the use
and the commercially valuable parts of the infringing work. 6 Next,
the court must examine the extent of use, or quantitative substan-
tiality.97 One court has stated that the wording of Section 107(3) sup-
ports the suggestion that wholesale copying is not fair use.98 Other
courts have adopted a broad quantitative substantiality test, holding
that a substantial percentage of copying constituted fair use.99

In the computer program context, this quantitative factor
almost always will weigh against the copier, who usually will have to
make an intermediate copy of all the machine-readable object code in
the process of reverse engineering it into a human-readable format.
With regard to computer programs, this factor alone gives courts the
discretion to deny the fair use defense: a court may deny use of the
defense by pointing to the intermediate copying of the entire program.
Other courts are savvy enough to realize that this step is necessary to
access the unprotected elements of a computer program and will give
little weight to this factor.10

92. 17 U.S.C. § 107(2).
93. Harper & Row, 471 U.S. at 563.
94. Id. at 564.
95. 17 U.S.C. § 107(3).
96. See id.
97. See id.
98. See Marcus v. Rowley, 695 F.2d 1171, 1176 (9th Cir. 1983) (stating that 'wholesale

copying of copyrighted material precludes application of the fair use doctrine').
99. See, for example, Rosemont Enter., 366 F.2d at 306 (holding that the fair use doctrine

applied even though the defendant used approximately 14% of the plaintiffs articles that
appeared in a magazine); Williams & Wilkins Co. v. United States, 487 F.2d 1345, 1353 (Ct. Cl.
1973) (holding that it was fair use to copy an entire journal article under certain narrowly defined
circumstances and noting that the extent of copying, though important, is only one factor to be
taken into account).

100. See Sega, 977 F.2d at 1521.

[Vol. 47:145162



REVERSE ENGINEERING

4. Effect of Use on Potential Market

The market demand test set out in the fair use doctrine
requires a court to consider the effect of the use of the subsequent
work on the potential market for or value of the copyrighted work. 101

Some courts consider this inquiry the most important test of the fair
use doctrine.12 One authority has suggested that the fair use doctrine
only applies to copying that does not materially impair the market
value of the copyrighted work.10° Some courts have examined whether
widespread use of the copied work would affect the potential market
for the copyrighted work. 0 4 Other courts have defined adverse market
effects to include diminishing potential sales, interference with
marketability, and usurping the market.10 5 Legitimate competition in
the same field, however, does not preclude a fair use defense
automatically, 1°' even though the competition undoubtedly affects the
market for the copyrighted work.

When a subsequent work is used commercially, courts presume
potential harm on the market for the copyrighted work.0 7 For
noncommercial uses, the copyright holder must establish that a causal
connection between the infringement and a loss of revenue exists and
that widespread use would affect adversely the copyrighted work's
potential market.108 Consistent with the purpose and character of use
tests, courts have distinguished between the exploitation of a copy-
righted work and copying the work to create an independently crea-
tive expression.Yo

5. Public Policy Interests

Although public policy interests are not included explicitly in
the fair use factors, some courts have held that certain public inter-
ests, such as access to information, outweigh the author's proprietary

101. 17 U.S.C. § 107(4).
102. Harper & Row, 471 U.S. at 566. See also 3 Nimmer on Copyright § 13.05[A][4] at 13-

88.12 (cited in note 1).
103. See 1 Nimmer on Copyright § 1.10[D] at 1-87.
104. See, for example, Sony, 464 U.S. at 451.
105. See, for example, Hustler Magazine, Inc. v. Moral Majority, Inc., 796 U.S. 1148, 1155-56

(9th Cir. 1986). The Harper & Row Court found that a use was not fair when it usurped the
market for the copyrighted work. Harper & Row, 471 U.S. at 567-69.

106. See Sega, 977 F.2d at 1523.
107. Sony, 464 U.S. at 451.
108. Harper & Row, 471 U.S. at 566-67.
109. See, for example, Sega, 977 F.2d at 1523.

1994] 163



VANDERBILT LAW REVIEW [Vol. 47:145

interest in the original work."'0 At least one court has rejected the
access-to-information argument because it recognized that preserving
the incentive for authors to create works generally serves the public
interest; the court explained that the idea-expression dichotomy
provides sufficient protection for the public interest in disseminating
information.,, Similarly, another court has stated that the fair use
doctrine is not a license for corporate theft and that a court cannot
ignore a copyright whenever it determines that the original work was
of interest to the public.112

IV. RECENT COPYRIGHT CASES ADDRESSING REVERSE ENGINEERING
OF SOFTWARE

The courts uniformly hold that the literal elements of a com-
puter program receive copyright protection.113  The central, current
question is what scope of copyright protection courts should give to the
nonliteral elements of computer programs. The result of this inquiry
currently revolves around this central question: what elements of
software will the reviewing court consider nonliteral? Until recently,

110. In Berlin v. E.C. Publications, Inc., 329 F.2d 541 (2d Cir. 1964), the court held that the
overriding public interest in parody permitted the defendant to conjure up images of the
plaintiffs work because there was no claim that the defendant's parodies of the plaintiffs songs
would partially or fully satisfy the demand for the originals. Id. at 545.

Another court found that it was fair use for two government libraries to photocopy thousands
of journal articles in their entirety because the public interest in medicine and medical research
outweighed the authors' interests. Williams & Wilkins Co., 487 F.2d at 1362. Note that there
was no evidence that the original works were substantially harmed by the photocopying. See id.
at 1353-54.

The Supreme Court has held that private, noncommercial time-shifting of free broadcast
television programming is fair use because of the public interest in accessing information through
television. Sony, 464 U.S. at 454-55. Note, however, that the Sony Court ignored the nature and
substantiality tests in examining the fair use of a subsequent nonprofit work.

111. Harper &Row, 471 U.S. at 609.
112. Iowa State Univ. Research Found., Inc. v. American Broadcasting Co., Inc., 621 F.2d 57,

61 (2d Cir. 1980).
113. See, for example, Computer Assoc. Int% Inc. v. Altai, Inc., 982 F.2d 693, 702 (2d Cir.

1992); Whelan Assoc., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1233 (3d Cir. 1986); Apple
Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1247-48 (3d Cir. 1983). Much support
exists for the proposition that copyright protection is only available for literal elements of
computer programs. See Samuelson, 55 L. & Contemp. Probs. at 319 (cited in note 43). First, the
Copyright Act defines computer programs. Id. Next, the legislative history does not indicate that
nonliteral elements are protected by copyright law. Id. Finally, case law denies protection to
nonliteral elements of computer programs. See, for example, Plains Cotton Coop. Ass'n of
Lubbock, Tex. v. Goodpasture Computer Serv., Inc., 807 F.2d 1256, 1262 (5th Cir. 1987); Synercom
Technology, Inc. v. University Computing Co., 462 F. Supp. 1003, 1012-14 (N.D. Tex. 1978). Some
courts, however, have ruled that nonliteral elements of computer programs receive protection un-
der-copyright law. See, for example, Whelan, 797 F.2d at 1237-38; Apple Computer, 714 F.2d at
1249 (holding that a computer program is a literary work whether it is in the form of source code
or object code and thus is protected from unauthorized copying).

164



REVERSE ENGINEERING

the leading case involving the copyright protection of nonliteral
aspects of computer programs was Whelan Associates, Inc. v. Jaslow
Dental Laboratory, Inc..114 In that case, the plaintiff alleged that the
defendant used the nonliteral structure of the original program to
develop a competitive version.115 In distinguishing between the ideas
and the expressions in the program, the court held that a utilitarian
work's purpose or function is the work's idea and that everything not
necessary to the purpose or function is expression.116 The Third
Circuit concluded that copyright protection extended beyond the code
itself to the structure, organization, and sequence of the program, 17

thus including nontangible aspects of the program in the protectable
elements.

Courts have had mixed responses to the Whelan decision.118

Recently, courts have been more careful to examine the second com-
puter program in detail and grant less protection to copyrighted pro-
grams. In Computer Associates International, Inc. v. Altai, Inc.," 9 the
Second Circuit rejected the Whelan holding outright and established a
three-step procedure to identify the nonliteral elements and evaluate
the substantial similarity of these elements.120 Under this test, a court
must break down the allegedly infringed program into its constituent
structural parts, 121 strip away nonprotectable material,122 and compare
the creative expression that remains with the structure of the

114. 797 F.2d 1222 (3d Cir. 1986).
115. Id. at 1225.27.
116. Id. at 1236.
117. Id. at 1248.
118. A few courts have adopted the reasoning in Whelan. See Bull HN Info. Sys., Inc. v.

American Express Bank Ltd., 1990 U.S. Dist. LEXIS 3819, *8 (S.D.N.Y. 1990); Broderbund
Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1133 (N.D.Cal. 1986). Other courts
soundly have rejected it. See Computer Assoc., 982,F.2d at 705-06; Plains Cotton Coop., 807 F.2d
at 1262; Synercom Technology, 462 F. Supp. at 1014. The academic community consistently has
criticized the overly broad conception established in Whelan. See note 43. See also J.H
Reichman, Electronic Information Tools-The Outer Edge of World Intellectual Property Law, 17
U. Dayton L. Rev. 797, 814-16 (1992); Reicbman, 42 Vand. L. Rev. at 696-98 (cited in note 3); Peter
S. Menell, An Analysis of the Scope of Copyright Protection for Application Programs, 41 Stan. L.
Rev. 1045, 1074, 1082 (1989); Marc T. Kretschmer, Note, Copyright Protection for Software
Architecture: Just Say No!, 1988 Colum. Bus. L. Rev. 823, 837-39; Peter G. Spivack, Comment,
Does Form Follow Function? The Idea/Expression Dichotomy in Copyright Protection of
Computer Software, 35 U.C.L.A. L. Rev. 723, 747-55 (1988); Thomas M. Gage, Note, Whelan
Associates v. Jaslow Dental Laboratories: Copyright Protection for Computer Software
Structure-What's the Purpose?, 1987 Wis. L. Rev. 859,860-61.

119. 982 F.2d 693 (2d Cir. 1992).
120. Id. at 706. See also Brown Bag Software v. Symatec Corp., 960 F.2d 1465, 1475-77 (9th

Cir. 1992) (holding that analytic dissection of software is necessary when determining substantial
similarity).

121. Computer Assoc., 982 F.2d at 70607.
122. Id. at 707-10.

19941



VANDERBILT LAW REVIEW

allegedly infringing program.'2 Furthermore, two additional courts
recently rejected Whelan outright. These cases emphasize the
growing need to re-evaluate the appropriate paradigm for protecting
computer software.

A. Sega v. Accolade

Sega Enterprises, Ltd. ("Sega") manufactures and markets a
video entertainment system (the Genesis console) and video game
cartridges.124 Accolade, Inc. ("Accolade") is an independent developer,
manufacturer, and marketer of entertainment software for computers,
including game cartridges that are compatible with the Genesis con-
sole and other computer systems. 25 Although Accolade is not a licen-
see of Sega, Accolade pursued the possibility of entering into a Sega
licensing agreement but later abandoned the effort because the license
required that Sega be the exclusive manufacturer of all Accolade's
games although Accolade was already selling its games for many
other systems. 26

To make its software compatible with Sega hardware, Accolade
used a two-step process. 27 First, it reverse engineered the software in
Sega's video cartridges to identify the interface specifications.18 Next,
Accolade wrote its own games for the Genesis console using only that
portion of Sega's code that was necessary to interface with the Genesis
console.129 When Accolade discovered Sega's plan to introduce a newer
version of the Genesis console on which Accolade games would not
work, software engineers at Accolade did more research and found
several more bytes' 3° of code that were necessary for Accolade's own
code to work properly in a Genesis console.131 Accolade's engineers

123. Id. at 710-11.
124. Sega Enter. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1514 (9th Cir. 1992).
125. Id.
126. Id. Accolade had been selling its games for several different hardware systems for

years.
127. Id.
128. Id. Accolade purchased a Genesis console and several game cartridges and used a

decompiler, which was wired into the console, to electrically generate printouts of the source code.
Id. at 1514-15. Accolade software engineers then experimented with similar portions of the
source code from the different games to find the needed interface specifications. Id. at 1515.
Next, they wrote a manual that described the functional requirements of Genesis-compatible
software. Id.

129. Id.
130. A byte generally consists of eight ones and zeros that represent a single keyboard

character.
131. Sega, 977 F.2d at 1515-16. In fact, Accolade created a standard header file (a file

containing general information used by many different parts of the program) to be included in all
software created for the Genesis console. Id. at 1516. This header file contained 20 to 25 bytes in
comparison to the total code size, which ranges from 500,000 to 1,500,000 bytes. Id. Although the

[Vol. 47:145



19941 REVERSE ENGINEERING

testified that they copied only these several bytes from Sega's code
into the final version of their program.13 2 This code, known as a TMSS
initialization code, is essentially a software lock designed to prevent
an unauthorized code from working on the Genesis console. 13 3 This
initialization code prompts a visual display after the insertion of the
game cartridge into the console that reads "PRODUCED BY OR
UNDER LICENSE FROM SEGA ENTERPRISES LTD."'3 4 Most

games that Accolade developed for the Genesis console previously had
been developed for other computer systems and had been created
independently. 3 5 In packaging these cartridges, Accolade clearly
stated that it was not associated with Sega, indicated that the
cartridges were compatible with the Genesis console, and separately
identified the Sega and Accolade trademarks.1 38

Sega filed suit in the fall of 1991 against Accolade, alleging
trademark infringement, false designation, 37 and copyright infringe-
ment.1 38 Accolade fied a counterclaim alleging false designation.13 9

Both parties sought preliminary injunctions on their respective
claims;140 the district court granted Sega's motion. 14' That court held
that Accolade could not assert a functionality defense to the alleged
trademark infringement because the TMSS initialization code used by
Accolade was not functional.'4 In addition, the court rejected Acco-
lade's fair use defense to the copyright infringement claim because the
decompilation was for commercial purposes and negatively affected
the market for Sega's game cartridges.'4

case does not reflect this fact, it is safe to assume that Sega's games were approximately the same
length. Thus, at most, Accolade used 0.005% of Sega's code when it developed games for the
Genesis console.

132. Id. at 1516.
133. Id. at 1515.
134. Id.
135. Id. at 1515-16.
136. Id. at 1516. The front of the Accolade box stated that the game cartridge was "for use

with Sega Genesis and Mega Drive Systems." Id. The back of the box stated that "Sega and
Genesis are registered trademarks of Sega Enterprises, Ltd. Game 1991 Accolade, Inc. All rights
reserved. Ballistic is a trademark of Accolade, Inc. Accolade, Inc. is not associated with Sega
Enterprises, Ltd. All product and corporate names are trademarks and registered trademarks of
their respective owners." Id.

137. Id. The console display indicated that Sega was the game's producer when a player
inserted Accolade's game cartridges into the Genesis console. Id.

138. Id.
139. Id.
140. Id.
141. Id.
142. Id. at 1517. The court based this decision on the testimony of a Sega employee who

stated that the programs could be modified in such a way that the Sega message would not
appear on the console at startup. Id. at 1516-17.

143. Id. at 1517. Accolade then filed a motion for a stay of preliminary injunction pending
appeal and subsequently filed a motion for an emergency stay in the United States Court of



VANDERBILT LAW REVIEW [Vol. 47:145

The Ninth Circuit reversed the district court and held that
when someone lacks any alternative access to unprotected elements of
an original work and has a legitimate reason for accessing those
elements, that person's disassembly of a copyrighted work is fair use
as a matter of law. 144 The court further held that when no other ac-
cess to a computer is available to competitors, use of initialization code
that triggers a display of the hardware manufacturer's trademark by
the competitor does not violate the Lanham Trademark Act.145

The Ninth Circuit addressed Accolade's four arguments regard-
ing copyright issues and quickly dismissed the first three.14 The
court, however, accepted Accolade's final argument that disassembling
the programs to gain access to the unprotected functional ideas of the
program was necessary and, thus, was fair use as embodied in Section
107 of the Copyright Act.147 The court agreed that Accolade had a
legitimate reason for gaining access to the unprotected elements of
Sega's software: to determine how to make its software compatible
with the Genesis console. 148 The court allowed disassembly for this
purpose.149

Appeals for the Ninth Circuit. Id. The Ninth Circuit temporarily stayed the injunction and later
dissolved it. Id.

144. Id. at 1514.
145. Id.
146. First, the court held that intermediate copying of computer programs infringed Sega's

exclusive rights granted by § 106 of the Copyright Act even when the final version of Accolade's
software was not substantially similar to the original work. Id. at 1519. The court based its
holding on its decision in Walker v. University Books, Inc., 602 F.2d 859 (9th Cir. 1979), stating
that "the fact that an allegedly infringing copy of a protected work may itself be only an inchoate
representation of some final product to be marketed commercially does not in itself negate the
possibility of infringement." Sega, 977 F.2d at 1518 (quoting Walker, 602 F.2d at 864). The court
explained that the plain language of the Copyright Act that grants the copyright holder exclusive
rights to "prepare derivative works based upon the copyrighted work" and to 'authorize the
preparation of copies" dictated its decision in both cases. Sega, 977 F.2d at 1518 (citing 17 U.S.C.
§ 106(1)-(2)).

The court next rejected Accolade's argument that it was lawful, under § 102(b) of the
Copyright Act, to disassemble the object code in order to examine and understand the functional
aspects of the programs because functional elements are exempted from copyright protection.
Sega, 977 F.2d at 1519-20.

The court also held that Accolade's assertion that § 117 of the Copyright Act permitted it to
disassemble the object code exceeded the drafters' contemplation of that section. Id. at 1520. The
court noted that Congress enacted § 117 on the recommendation of the National Commission on
New Technological Uses of Copyrighted Works (CONTU), which stated that because 'the
placement of any copyrighted work into a computer is the preparation of a copy [since the
program is loaded into the computer's memory], the law should provide that persons in rightful
possession of copies of programs be able to use them freely without fear of exposure to copyright
liability." Id. (quoting CONTU, Final Report 13 (1979)) (brackets in original).

147. Sega, 977 F.2d at 1520. The court reasoned that because the need to disassemble code
generally arises only when the functions are not visible to the user and no alternative means are
available to access these ideas, courts should examine computer object code on a case-by-case
basis under the fair use analysis. Id.

148. Id.
149. Id.



REVERSE ENGINEERING

In determining that Accolade's copying of Sega's object code
was fair use, the court considered the Section 107 factors.'-' First, the
court found that although Accolade used the copied work for commer-
cial purposes, Accolade overcame the presumption of unfairness be-
cause the use was legitimate and essentially nonexploitative, with
minimal commercial significance. 51 Next, the court found that Sega
would suffer only minor economic loss because potential customers
probably would buy multiple Genesis-compatible video games, and
Accolade's games differed from Sega's.152 Applying the nature test, the
court emphasized that computer programs are utilitarian articles that
contain many functional elements in addition to protected expres-
sion.15 Because humans cannot read object code and because of the
code's large size, however, copies of the object code are necessary to
translate it into source code.154 Of the four factors to be considered in
determining whether Accolade's copying of Sega's object code was fair
use, the court found that only the third statutory factor, the amount of
copying, weighed in Sega's favor.155 The court gave this factor little
weight, however, and stated that the amount of copying did not
preclude a fair use finding.M Thus, the court found that the factors
weighed heavily in favor of Accolade and concluded that, as a matter
of law, disassembly in this situation was a fair use of a copyrighted
work.157

B. Atari v. Nintendo15

The facts of Atari are similar to those in Sega, except that
Atari lacked clean hands.1 59 Nintendo makes a home video system

150. Id. at 1521-22.
151. Id. at 1522-23.
152. Id. at 1523-24.
153. Id. at 1524-26.
154. Id. at 1525-26.
155. Id. at 1526.
156. Id. The court cited Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 449-50

(1984), and Hustler Magazine, Inc. v. Moral Majority, Inc., 796 F.2d 1148, 1155 (9th Cir. 1986), for
support.

157. Sega, 977 F.2d at 1527-28.
158. Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832 (Fed. Cir. 1992). For articles

discussing this case, see Harold C. Moore, Comment, Atari v. Nintendo: Super Mario Uses
Expressive" Security Feature to "Lock" Out the Competition, 18 Rutgers Computer & Tech. L. J.

919 (1992); Susan Kostal, Federal Circuit Backs Reverse Engineering, Los Angeles Daily J. 1
(Sept. 16, 1992). See also Arthur R. Miller, Copyright Protection for Computer Programs,
Databases, and Computer.Generated Works: Is Anything New Since CONTU?, 106 Harv. L. Rev.
977, 1015-22 (1993).

159. Atari, 975 F.2d at 836.

1994]



VANDERBILT LAW REVIEW

that consists of a monitor, a console, and controls.1o To start the
game, a user inserts a game cartridge into the console.161 The system
contains a software lock that controls access to the console by rejecting
cartridges that do not contain the "key."162  After unsuccessful
attempts to access Nintendo's security system, Atari became a
licensee.1 63 This agreement strictly limited Atari's access to Nintendo's
technology as well as the number of different games that Atari could
produce each year.1 64 Atari, under false pretenses, then acquired a
reproduction of the security program from the Copyright Office.65
Atari used this information to correct errors in object code obtained
through microscopic examination of Nintendo's microprocessors.'"
Using a different programming language and microprocessor, Atari
subsequently developed a program that enabled access to the console
by generating signals that functionally were indistinguishable from
Nintendo's security system.167 The district court found that Atari
infringed Nintendo's copyright. 61 Atari appealed and asserted
copyright misuse as a defense to the infringement.6 9 The Federal
Circuit, which had jurisdiction because the action included a patent
infringement claim, heard the appeal. 70

The Federal Circuit affirmed the district court by applying the
law of the Ninth Circuit 7' and held that Atari was not permitted to
raise the fair use defense because it had obtained an unauthorized
copy of the work. 72 Additionally, the court rejected the fair use
argument because Atari copied, into its final version of software, parts
of the expression that were unnecessary for functionality and
compatibility.173 The Federal Circuit, however, went further than the
Ninth Circuit did in Sega. The Federal Circuit judges, who hear all
the appealed patent cases, probably realized that to reject reverse
engineering of computer programs or to deny access in all cases would

160. Id. at 835.
161. Id.
162. Id. at 836.
163. Id.
164. Id.
165. Id. Atari's lawyer requested a reproduction of Nintendo's program from the Copyright

Office by falsely alleging that his client was a defendant in a current case. The attorney agreed to
use the program only in connection with litigation. Id.

166. Id.
167. Id.
168. Id. at 837.
169. Id.
170. M4.
171. Id.
172. Id. at 843.
173. Id. at 845.

170 [Vol. 47:145



REVERSE ENGINEERING

be to grant disguised patents to software. 1' 4 Thus, they held that
reverse engineering to discern the unprotectable ideas of a computer
program is fair use when a programmer legitimately obtains the
intermediate copy.175 The court further explained that reproduction of
protectable expression is necessary to determine the bounds of the
work's protected information.", The test that the court used for
copyright infringement purposes, however, was not fair use of reverse
engineering but substantial similarity.17' In addition, the court
recognized that the copyright paradigm cannot be used to exclude
competitors from the market.17

V. REVERSE ENGINEERING OF SOFTWARE FOR THE PURPOSES OF
INTEROPERABILITY AND ANALYSIS

For years the courts and commentators in the field of
intellectual property law have struggled to determine the appropriate
scope of protection for computer programs. The circuits are split on
this issue, and commentators are at odds with each other.
Nonetheless, a clear trend has developed recently: the courts are
moving from a maxi-protectionist view to a radical, nonprotectionist
one.

The majority of courts and commentators currently agree that
computer programs should receive only thin protection. 79 The ques-
tion is whether thin. protection does or should allow reverse engineer-
ing for the purpose of interoperability or to create better programs
when the final software product is not substantially similar to the
original program. Fearing widespread piracy, many who advocate
only thin protection for software are slow to accept reverse
engineering of computer programs even under these circumstances. 8°

174. See id. at 842.
175. Id. at 843. This holding is much stronger and clearer than the Ninth Circuit's holding in

Sega.
176. Id.
177. Id. at 844-45.
178. Id. at 845-46. The misuse defense is well recognized in the patent paradigm and

generally arises when a patent owner attempts to secure exclusive rights beyond the scope of pat-
ent law and contrary to public policy. Thomas F. Smegal, Jr., Misuse Defense Gains in Federal
Court, Nati L. J. 18, 18 (Feb. 15, 1993). See also Atari, 975 F.2d at 845-46.

179. See Feist Publications, Inc. v. Rural Tel. Serv. Co., 111 S. Ct. 1282, 1289-91 (1991);
Kepner-Tregoe, Inc. v. Carabio, 203 U.S.P.Q. 124, 130 (E.D. Mich. 1979). See generally note 52
and text accompanying notes 39-76.

180. See notes 205-06 and accompanying text.

1994]



VANDERBILT LAW REVIEW

A. Reverse Engineering: Why Bother?

Over the last three decades, the number of computers in use
has increased exponentially. Literally hundreds of computer hard-
ware and software manufacturers operate in the United States. Many
computers are expected to communicate, or interoperate, with other
computers. In addition, computer users need and expect to use a
variety of different software programs on their hardware. These capa-
bilities require compatibility among different brands of hardware and
software, and implementation of these expectations creates the need
for standardization.al Hardware and software vendors who want to
discourage competitors often are unwilling to provide specific
information about their product's interface specifications, protocols,
and underlying ideas. This information, however, is necessary to
achieve the compatibility that is required for two systems to
communicate. When this necessary information is incomplete,
inaccurate, or otherwise unavailable, reverse engineering, which
almost always requires intermediate copying, often is the only way to
access the unprotected information.182 Thus, reverse engineering has
become an industry norm of competition in software production
because of the need for standardization and compatibility.1W Although
reverse engineering enjoys widespread use as a fundamental step in
normal software development,8 it often is the last resort because it is
so costly, time-consuming, and tedious.185

Courts usually assess the legitimacy of reverse engineering by
examining the purpose of the activity. For example, the Section 117
exemption of the Copyright Act permits execution or copying of the

181. For articles recognizing the need for compatibility and interoperability, see generally
Peter A. Wald, Michael K. Plinack, and Harold M. Freinan, Standards for Interoperability and
the Copyright Protection of Computer Programs, in 365 Intellectual Property/Antitrust 1993 891
(P.L.I., 1993); Joseph Farrell, Standardization and Intellectual Property, 30 Jurimetrics J. 35, 43.
44 (1989); Jacobs, 30 Jurimetrics J. at 92-100 (cited in note 28) (discussing different situations
requiring compatibility and the need for development of independently compatible software). See
also Timothy S. Teter, Note, Merger and the Machines: An Analysis of the Pro-Compatibility
Trend in Computer Software Copyright Cases, 45 Stan. L. Rev. 1061 (1993).

182. Johnson-Laird, 5 Software L. J. at 345 (cited in note 20).
183. See Farrell, 30 Jurimetrics J. at 35 (cited in note 181).
184. Johnson-Laird, 5 Software L. J. at 345-46 (cited in note 20); Raskind, 70 Minn. L. Rev. at

387 n.10 (cited in note 69).
185. See text accompanying notes 31-32 for an explanation of why reverse engineering has

these attributes. Decompilation of software usually does not save money or time in software
development. In fact, reverse engineering an entire program often is more costly and time-
consuming than designing a program from scratch. Johnson-Laird, 5 Software L. J. at 348 (cited
in note 20). The fact that reverse engineering usually is a last resort is evidenced by the difficulty
Atari had in deciphering Nintendo's original copyrighted program. See Atari, 975 F.2d at 836.

172 [Vol. 47:145



REVERSE ENGINEERING

program for archival purposes or to use the program.1'  In contrast, a
competitor who copies a program in the process of decompilation and
subsequently markets a product that is substantially similar to the
original program is infringing. The borderline case occurs when a
programmer copies a computer program for the purpose of analyzing
the program's unprotected ideas or to determine its interface specifica-
tions in an effort to produce a competitive, compatible, noninfringing
product. Fortunately, courts are beginning to distinguish between the
unfair exploitation of an author's copyrighted work and copying that
work to make independent creative expression possible. 8 7

B. Interoperability

1. The Need for Interoperable Systems

Interface specifications are essential to interoperability and
compatibility. For two computers to communicate, they must speak
the same language by using exactly the same interface specifications
and protocols.as Any inaccuracy will cause the interaction between
the two computers to fail, probably at the most inopportune time. 89

In other words, nothing short of total compatibility will be effective;
the point of connection to the operating system (the low-level software
that makes a computer operate) must be totally compatible. 90

Compatibility benefits consumers in numerous ways. Users
avoid waste because they need not purchase and learn new software,
and they may access additional computing power via modems and
networks. Compatibility also provides users with more options for
their systems, thus broadening or adding to the competitive market. 9'
The use of networks and expensive computer systems and consumer

186. 17 U.S.C. § 117. See note 71 for the text of§ 117.
187. See Sega, 977 F.2d at 1522.
188. See notes 27 and 28 for an explanation of interfaces and protocols.
189. Johnson.Laird, 5 Software L. J. at 340 (cited in note 20).
190. Even if a program is 99% compatible, at some point it will fail. Such a failure can be a

disaster depending on the context.
191. Jacobs, 30 Jurimetrics J. at 92 (cited in note 28). See also Steering Committee,

Intellectual Property Issues in Software at 66-67, 71-72 (cited in note 73) (discussing public
demand and need for compatibility and interoperability of software). Compatibility of software
increases its value because of network externalities, or benefits that accrue as a result of being
part of a large system. This compatibility usually helps small companies. Id. at 71-72.

1994] 173



VANDERBILT LAW REVIEW

market pressure demand compatibility.192  Often, manufacturers
achieve compatibility through either a formal or a de facto
standardization. 193  Standardization has a number of benefits. It
facilitates the creation and use of networks, 194 permits the use of mul-
ti-user and multi-application files,195 saves money,1 9 and encourages
competition and innovation.197 Compatibility is more economical and
much easier once industry standards are established.9 3 The difficulty
arises when no generally known standard exists, forcing competitors
in the software industry to study existing programs' interface
specifications and communication protocols. The ultimate goal of this
examination is not to free ride but to produce a unique and market-
able product.

A computer user can see the ideas embodied in the external
interfaces of a program merely by using the program. To learn about
and understand the non-displayed ideas and functions contained in a
computer program, such as interface specifications and protocols,
however, a computer programmer must study and analyze the source
code. Generally, applications programs such as word processors will
contain more expression than an operating system. Most vendors,
however, do not want to disclose their source code because it contains
the interface specifications on its face. Thus, the vendors only
distribute their unreadable object code and not the human-readable
source code. When the source code is unavailable, the programmer
must transform the available object code into readable code via
reverse engineering in order to examine the unprotected, underlying
ideas. 99

192. Standardization means making products similar enough so that they are compatible.
Farrell, 30 Jurimetrics J. at 36 (cited in note 181). The industry values standardization and
efficiency. Formal standardization usually is more prevalent when compatibility is important. Id.
at 45. De facto standards are inevitable and reflect consumers' desires for compatibility. For a
discussion of standards, see Steering Committee, Intellectual Property Issues in Software at 67.
68, 70-72 (cited in note 73).

193. De facto standards are those standards that are defined by computer hardware and
software manufacturers. See Jacobs, 30 Jurimetrics J. at 99 (cited in note 28). De facto standards
often result from consumer demands and preferences.

194. See Farrell, 30 Jurimetrics J. at 36 (cited in note 181).
195. See id.
196. See id. (stating that standardization saves costs of retraining); Jacobs, 30 Jurimetrics J.

at 100 (cited in note 28) (asserting that standardization benefits consumers by not requiring
another investment in new software, training, and data input and storage).

197. See Farrell, 30 Jurimetrics J. at 36 (cited in note 181). Standardization and com-
patibility encourage the development of new products and promote innovation without reinven-
tion of the wheel. See id.; Jacobs, 30 Jurimetrics J. at 100 (cited in note 28). Standardization also
can discourage innovation, however, and can result in a loss of variety. Farrell, 30 Jurimetrics J.
at 36.

198. See Farrell, 30 Jurimetrics J. at 36.
199. See text accompanying notes 26-35.

174 [Vol. 47:145



1994] REVERSE ENGINEERING 175

2. Legal Acceptance of the Need for Interoperability

Despite the compelling justifications for adopting a doctrine
that permits reverse engineering of computer programs for the pur-
pose of interoperability, an immense amount of controversy surrounds
the need to make an intermediate copy in the process of reverse engi-
neering. To make a program interoperate with another, a
programmer only needs to use some of the functional elements of the
original computer program, yet no United States court directly or
explicitly has embraced the disassembly of computer programs for the
purpose of interoperability. Several courts have rejected the
argument that program developers make intermediate copies for the
sole purpose of determining interface specifications of a program in
order to achieve compatibility with another system.2

00 Other courts
have disagreed.201 Although the Federal Circuit rejected the

200. For example, the district court in Sega rejected the interoperability argument: 'The
grant of a copyright is intended to motivate creative activity by the provision of a special reward,
and eventually allows the public total access to the products of their genius after the limited
period of exclusive control has expired.... Without the economic incentive to create which
copyright protection provides, this incentive and the advantages it creates for society may well be
lost." Sega Enter. Ltd. v. Accolade, Inc., 785 F. Supp. 1392, 1400 (N.D. Cal.), afld, 977 F.2d 1510
(9th Cir. 1992) (citing West Publishing Co. v. Mead Data Central, Inc., 616 F. Supp. 1571, 1582 (D.
Minn. 1985)). In Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37 (D. Mass. 1990),
the court stated that "[t]he desire to achieve 'compatibility' . . . cannot override the rights of
authors to a limited monopoly in the expression in their intellectual 'work.'" Id. at 69. The Apple
Computer court held that compatibility does not limit the copyright protection embodied in §
102(b) of the Copyright Act. Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240,
1253 (3d Cir. 1983) (stating that 'Franklin may wish to achieve total compatibility... but this is a
commercial and competitive objective which does not enter into the somewhat metaphysical issue
of whether particular ideas and expressions have merged."). Another court found that the idea-
expression dichotomy could be invoked only if it was "the only and essential means of
accomplishing" compatibility. Apple Computer, Inc. v. Formula Int'l, Inc., 725 F.2d 521, 525 (9th
Cir. 1984) (quoting CONTU, Final Report 20 (1979)).

Several cases that found copyright infringement of computer programs are distinguishable
from cases dealing with the interoperability issues addressed in this Note. In Atari Games Corp.
u. Nintendo of Am., Inc., the infringer copied more than necessary to achieve compatibility by
going "beyond any legitimate understanding of the 'functionality' of the program." 18 U.S.P.Q.
1935, 1937 (N.D. Cal. 1991), affd, 975 F.2d 832 (Fed. Cir. 1992). In SAS Inst., SAS obtained S &
H's source code under false pretenses and wrongfully used the information after the licensing
agreement terminated. SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816,820,828-29
(M.D. Tenn. 1985). In addition, the defendant's final code copied the original copyrighted code 44
times. Id. at 822, 830.

201. See, for example, Plains Cotton Coop. v. Goodpasture Computer Serv., Inc., 807 F.2d
1256, 1262 (5th Cir. 1987) (declining to follow Whelan because the similarities in the computer
programs were dictated by externalities of the cotton market); NEC Corp. v. Intel Corp., 10
U.S.P.Q.2d 1177, 1183-89 (N.D. Cal. 1989) (recognizing that it was permissible to disassemble and
use information in an effort to develop a separate microcode). Although one conceivably could
distinguish Plains Cotton and NEC by external constraints (for example, the cotton market or
IBM personal computer architecture), user expectations are external restraints on many other
software programs such as the hardware constraint-the Genesis console-in the Sega case. See
also E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp. 1485, 1502 (D. Minn. 1985) (holding



VANDERBILT LAW REVIEW [Vol. 47:145

contention that Atari merely incorporated unnecessary instructions to
guarantee future compatibility,2o2 the court approved the necessary
reproduction of protectable expression .2°  With its holding, the
Federal Circuit indirectly agreed that reverse engineering is
permissible for the purpose of immediate interoperability. Thus, the
trend appears to be in the more progressive direction of allowing
reverse engineering for the purpose of independently developing
interoperable software.2°4

Some commentators fear that a doctrine allowing reverse engi-
neering to achieve interoperabilty will be abused and result in indus-
try-wide piracy. 0 5 Reverse engineering of software for piracy purposes
clearly is unfair and inappropriate, and courts should continue to
prohibit it. When a programmer both independently creates a com-
puter program and reverse engineers another system solely to discern
the interface specifications and protocols required to make the two
programs compatible, however, the free-rider problem does not
arise.206

Rejecting the maxi-protectionist views adhered to by United
States courts, the European Economic Community recently adopted
the Council Directive on the Legal Protection of Computer Programs
("the Directive") to protect computer programs under the copyright
paradigm.207 This legislation allows decompilation, but only when it is
absolutely necessary to achieve interoperability of an independently

that it was permissible for the defendant essentially to reverse engineer the plaintiffs software to
determine specifications necessary to write functionally compatible software, but not to
incorporate parts of the plaintiffs software that were not essential to functional capability).

202. Atari, 975 F.2d at 845.
203. Id. at 843, 844.
204. The Ninth Circuit came the closest to this trend in Sega. The court accepted the need

for interoperability in one fell swoop and said little more about the issue. See Sega, 977 F.2d at
1524-26. See also Atari, 975 F.2d at 842-43. Leading copyright scholars believe that studying and
copying software for the purpose of developing a compatible computer program is fair use even if
the resulting programs compete. LaST Frontier Report, 30 Jurimetrics J. at 25 (cited in note 52).
See generally Brief Amicus Curiae 1, reprinted in 33 Jurimetrics J. 147 (cited in note 1).

205. Clapes, Lynch, and Steinberg, 34 U.C.LA. L. Rev. at 1499-1510, 1575-76 (cited in note
11). Software piracy is widespread because it is quick and easy, and the cost of creating software
is much greater than the cost of copying it. Samuelson, 1984 Duke L. J. at 689-91 (cited in note
20). The prevalence of piracy and the great cost to the producers demonstrate the difficulties of
using copyright-law to protect software. Id. at 692. See also Dennis S. Karjala, Copyright,
Computer Software, and the New Protectionism, 28 Jurimetrics J. 33 (1987) (advocating only as
much protection of software as is necessary to prevent piracy).

206. See Jacobs, 30 Jurimetrics J. at 102 (cited in note 28). Note that the Whelan decision
does not address independent development of software. See Whelan Assoc., Inc. v. Jaslow Dental
Lab., Inc., 797 F.2d 1222 (3d Cir. 1986).

207. Council Directive 91/250, 1991 O.J. (L 122) 42. The EEC adopted the final version on
May 14, 1991. For a description of the EC Directive and its history, see generally Bridget
Czarnota and Robert J. Hart, Legal Protection of Computer Programs in Europe-A Guide to the
EC Directive (Butterworth, 1991). The Directive generally seeks to award broad protection to
computer programs. Id. at 8.

176



REVERSE ENGINEERING

created computer program. 2s0 Although the Directive is a step in the
right direction, even a broad interpretation may hinder competition
because of the narrow circumstances under which reverse engineering
is permitted.2°9 Thus, only the larger software producers who already
dominate the market benefit. The closest thing to the Directive's
interoperability exception in the Copyright Act is the fair use doctrine
of Section 107, which United States courts have not interpreted as
directly including reverse engineering for interoperability.21o The
United States, however, would benefit nationally and internationally
by adopting a clear and definite doctrine that generally permits re-
verse engineering for the purpose of independently developing in-
teroperable software that is not substantially similar to the original
copyrighted program.

C. Permitting Analysis Versus Granting Patent-Like Protection

When a programmer wants to identify the unprotectable,
underlying ideas and functions of a computer program, that
programmer must reverse engineer the program for analysis purposes.
If reverse engineering of computer programs is not allowed for this
purpose, then, under the rubric of copyright, the rights in a work's
underlying ideas will exceed those rights conferred by copyright law.211

208. Council Directive 91/250, Art. 6(), 1991 O.J. (L 122) at 45.
209. The three prerequisites to qualify for the decompilation exception are that (1) the copier

must have a right to use the program under analysis, (2) the needed information must be
unavailable, and (3) one must limit decompilation to the part required for interoperability. Id.
The first requisite is reasonable, but the other two are overly restrictive because they prohibit ac-
cess to underlying ideas if interface specifications and protocols are available. Furthermore, it
usually is impractical to limit reverse engineering to the interoperable parts because the competi-
tor typically cannot distinguish the parts of the program from each other. See generally Linda G.
Morrison, Note, The EC Directive on the Legal Protection of Computer Programs: Does It Leave
Room for Reverse Engineering Beyond the Need for Interoperability?, 25 Vand. J. Transnatl L. 293
(1992).

The debates that arose prior to the final adoption of the Directive focused on the reverse
engineering exception to the exclusive right of reproduction of computer programs. Thus, the Di-
rective's position on reverse engineering actually is a compromise that only allows decompilation
for compatibility purposes.

210. The Directive does not have an exception resembling the fair use doctrine. In fact,
Article Six of the Directive likely will be more strict than the fair use doctrine in some cases,
although the Directive can be varied by contract. Czarnota and Hart, Legal Protection of
Computer Programs at 126 (cited in note 207).

211. Corrected Opposition of Accolade at 13, reprinted in 15 Computer L. Rep. at 601 (cited
in note 72). In its brief for the Ninth Circuit, Accolade explained how the District Court ruling
misuses patent law: '[W]hat Sega is seeking here is patent law protection with a patent [by]
trying to use the copyright and trademark laws to monopolize the idea of how the Genesis works."
Appellants Opening Brief 9, Sega Enter. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992) (No.
92-15655), reprinted in 15 Computer L. Rep. 976, 984 (1992). See also text accompanying note
174. Patent law grants the right to prohibit reverse engineering to patent holders, but this right
exists for less time than a work is protected under copyright.

1994] 177



VANDERBILT LAW REVIEW

The codification of the idea-expression dichotomy in Section 102 of the
Copyright Act indicates that Congress intended that only a patent can
or should prohibit the use of an idea.212  Patented products receive
more protection than copyrighted works, but the patent requirements
of novelty, usefulness, and non-obviousness 213 are significantly harder
to meet than the copyright requirements. In addition, patents are
granted for a much shorter duration.2 14

Restrictions on the reverse engineering of computer programs
create a virtual long-term patent under the Copyright Act but without
the strict requirements of patents. If no aspect of the program may be
copied, then no one will be able to access its nonvisible, underlying
functions and ideas. Essentially, the program will receive the same
protection as a patent, but for much longer than the patent laws
provide. Furthermore, it generally is inappropriate to afford computer
programs patent-like protection because the development of computer
programs does not require the same level of investment as industrial
products.215 In summary, patent-like protection for software provides
too much protection. This kind of system circumvents the policies
behind the patent and copyright laws that encourage public access to
information.

The courts prior to Sega and Atari essentially afforded com-
puter programs patent-like protection under copyright law. Recently,
some courts have approved of copying and decompiling computer
programs to determine and analyze the underlying unprotected ideas
when these processes are the only practical means of obtaining that
information.21 6  By holding that reverse engineering of a computer

212. Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 168 (1989) (quoting Lear,
Inc. v. Adkins, 395 U.S. 653, 656 (1969)) (stating that '[b]y offering patent-like'protection for ideas
deemed unprotected under the present federal scheme, the Florida statute conflicts with the
'strong federal policy favoring free competition in ideas which do not merit patent protection!").

213. 35 U.S.C. §§ 101-103 (1988).
214. Patents exist for 17 years. 35 U.S.C. § 154 (1988). A copyright extends for the life of the

owner plus 28, 50, or 56 years. 17 U.S.C. §§ 301-305 (1988 & Supp. 1992).
215. Although the development of software can be very expensive and time-consuming, the

development of a patentable industrial product often requires additional time, money, and
intellect: someone must generate an idea for a product, make and test prototypes, purchase and
alter the machinery and equipment required to mass produce the product, and purchase the raw
material to make the product.

216. See, for example, NEC Corp. v. Intel Corp., 10 U.S.P.Q.2d 1177, 1189 (N.D. Cal. 1989);
E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp. 1485, 1501 n.17 (D. Minn. 1985). The E.F.
Johnson court specifically stated:

The mere fact that defendant's engineers dumped, flow charted, and analyzed plaintiffs
code does not, in and of itself, establish pirating. As both parties' witnesses admitted,
dumping and analyzing competitors' codes is a standard practice in the industry. Had
Uniden contented itself with surveying the general outline of the EFJ program, thereafter
converting the scheme into detailed code through its own imagination, creativity, and in-
dependent thought, a claim of infringement would not have arisen.

178 [Vol. 47:145



REVERSE ENGINEERING

program for the purpose of determining its underlying ideas is fair
use, both the Federal Circuit and the Ninth Circuit implicitly have
agreed that reverse engineering for the purpose of analysis is
permissible under certain circumstances. 217  These courts have
provided an alternative analysis that other courts should follow in the
future.

D. Public Policy Concerns

The United States copyright laws encourage people to build on
the ideas and information contained in a work.218 It is not the copy-
right system but the patent laws that protect processes and methods
of operation.2 9 An author may not enjoy patent protection by putting
a method, process, or idea into an unintelligible form, seeking a
copyright in the work, and then asserting infringement when someone
else attempts to analyze those unprotected elements.22 0  Disallowing
reverse engineering of computer programs for legitimate purposes
circumvents the main public policy or goal of the copyright laws by
hindering growth and access to unprotectable ideas.221 Instead, this
overprotection clearly gives much higher priority to the copyright
laws' secondary purpose of rewarding authors.222

If reverse engineering is disallowed, then software developers
who wish to create legitimate, competitive, compatible products will
face huge obstacles. For example, although a computer program may
be written in a number of different ways, software often is dictated
functionally such that most or all other versions are less efficient.2 2 3

E.F. Johnson, 623 F. Supp. at 1501 n.17. But see Walt Disney Prod. v. Filmation Assoc., 628 F.
Supp. 871, 875-77 (C.D. Cal. 1986) (holding that copies made in motion picture production could
infringe the reproduction rights of the copyright owner of the original work). The district court in
Atari rejected the argument that analysis of a computer program to accomplish compatibility with
a competitor's hardware is legal. Atari Games Corp. v. Nintendo of Am., Inc., 18 U.S.P.Q.2d 1935,
1939 (N.D. Cal. 1991), afftd, 975 F.2d 832 (Fed. Cir. 1992) (holding that intermediate copying of
copyrighted programs was an infringement). Even though the Federal Circuit affirmed the
district court holding, the circuit court disagreed with the district court on this particular point.
See Atari, 975 F.2d at 842-44.

217. 'This fair use did not give Atari more than the right to understand the [security]
program and to distinguish the protected from the unprotected elements.... Any copying beyond
that necessary to understand the [security] program was infringement." Atari, 975 F.2d at 844.

218. See Feist Publications v. Rural Tel. Serv. Co., Inc., 111 S. Ct. 1282, 1290 (1991).
219. See Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141 (1989).
220. Atari, 975 F.2d at 842.
221. Register Report at 5 (cited in note 1). See also H.R. Rep. No. 94-1476 at 47-50 (cited in

note 1).
222. See text accompanying note 1.
223. External technological constraints rather than personal expression frequently dictate

the independent creation aspects and market value of functional works. Reichman, 43 Stan. L.
Rev, at 953-54 (cited in note 52).

1791994]



VANDERBILT LAW REVIEW

Yet the market demands fast, efficient software. In addition, one
efficient method may become the standard. Thus, if the copyright
given to computer programs is maxi-protectionist, then the first copy-
right owner effectively receives a monopoly for that particular system.
This scheme produces two negative results. First, it leaves no room
for competition because an inefficient product will have little market
value and could lead to a proliferation of inefficient systems. In the
end, consumers will suffer the most. Second, if courts disallow
disassembly of computer programs, competitors probably will be
unable to achieve full compatibility with other software and hardware.
Those who copyright their software will defeat others' attempts to
create computer programs that are compatible with their system.
This system eventually would lead to mini-monopolies.

This possibility introduces another important issue: whether
hardware manufacturers may control the software products that end
users may utilize with their particular hardware.2 2 4 By forbidding re-
verse engineering for the purpose of interoperability, consumers and
competitors alike will not have legal access to the ideas and functions
contained in most software. If a hardware or software vendor success-
fully restricts access to its interface specifications, then competitors
will be unable to offer compatible software. Consumers will have to
purchase all software for that vendor's system at that vendor's price.
The Copyright Act does not envision this kind of monopoly.

Some commentators have argued that permitting decompila-
tion would leave the software copyright owner with no lead time.22 5

- This concern is valid only if reverse engineering is allowed for piracy.
Furthermore, although reverse engineering may shorten lead time, it
does not eliminate it altogether because the process of decompilation
itself is so time-consuming.226 In many cases, the underlying ideas
and functions rarely can be discerned absent either disclosure by the
copyright owner or the ability to decompile programs for legitimate
purposes because the guesswork required to obtain this information
would take too long to be cost effective.

Unfortunately, some traditional features of copyright inhibit
the achievement of compatibility in software.2 27 Additionally, strong
intellectual property protection tends to retard formal

224. See Stern, 15 Computer L. Rep. at 266 (cited in note 74). Unfortunately, neither the
district court nor the circuit court in Sega directly addressed this issue.

225. See generally Miller, 106 Harv. L. Rev. at 978 (cited in note 158).
226. See Part ll.B.
227. See Farrell, 30 Jurimetrics J. at 35 (cited in note 181).

180 [Vol. 47:145



19941 REVERSE ENGINEERING 181

standardization,228 which otherwise could provide many benefits to
consumers.

E. Identifying the Appropriate Paradigm for Software

Another important question is whether computer programs
should continue to receive protection under copyright law or under a
new sui generis law like the one enacted for semiconductor chip tech-
nology.2" Clearly, patent law is not the best paradigm in which to
protect computer programs.20 Although the Patent Office grants

228. Strong intellectual property protection tends to increase a company's vested interest.
Id. at 44. The effects on informal standardization are unknown. Id. But see Clapes, 15 Computer
L. Rep. at 271-72 (cited in note 57).

229. Semiconductor Chip Protection Act of 1984, 17 U.S.C. §§ 901 et seq. (1988 & Supp. 1992)
(SCPA).

230. See text accompanying notes 211-14. Patent law requires extensive disclosure in return
for a 17-year monopoly. Samuelson, 70 Minn. L. Rev. at 512.-13 (cited in note 50). Neither the
Constitution nor the Copyright Act indicates that disclosure to the public is a goal or prerequisite
for federal copyright protection. In fact, disclosure is not even an integral element of copyright
protection policies. Leo J. Raskind, The Uncertain Case for Special Legislation Protecting
Computer Software, 47 U. Pitt. L. Rev. 1131, 1140 (1986). See also Samuelson, 1984 Duke L. J. at
711 (cited in note 20). Disclosure of ideas embodied in a copyrighted work is not a quid pro quo
for copyright protection. Brief for Amici Curiae of Computer and Business Equipment
Manufacturers Association 15, Sega Enter. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992)
(No 92-15655), reprinted in 15 Computer L. Rep. 1043, 1054 (1992). Disclosure of computer
programs is required only in an infringement action.

Registration of a computer program only requires the deposit of the first and last 25 pages of
source code and less than that if trade secrets are involved. 37 C.F.R. § 202.20(c)(2)(vii) (1992).
The statute exempts registration of programs published in only machine-readable form from
mandatory deposit requirements. 17 U.S.C. § 407 (1988). As a result of the Copyright Act of
1976, the concept of a public right of access is at odds with the automatic copyright protection that
is provided for unpublished works from the moment of fixation. See 17 U.S.C. § 302(a).

One commentator has argued that use of the computer program by the public satisfies the
access need. See William F. Patry, The Fair Use Privilege in Copyright Law 401 (B.N.A., 1985).
Patry argues that "[t]he public's need for access to the copyrighted work is fully satisfied by the
copyright owner's marketing of the original. A competitor who reverse engineers a copyrighted
computer program is not at all interested in increasing that access; to the contrary, his only
purpose is to get the public to purchase his work rather than the original thereby eliminating the
market for the original." Id. However, the denial of access to ideas in computer programs by
prohibiting reverse engineering, which by definition involves intermediate copying in the software
arena and is necessary to read and understand those ideas, violates the federal policy of copyright
law to protect expression but not ideas.

As previously discussed, the copyright owner of a computer program effectively receives a
patent to the object code because no one can access the underlying ideas embedded in the
program. Furthermore, this refusal to disclose contravenes the purpose of the law: [Tbo promote
the Progress of Science and useful Arts." U.S. Const. Art. I, § 8, cl. 8. See also Feist, 111 S. Ct. at
1290:

To this end, copyright assures authors the right to their original expression, but encour-
ages others to build freely upon the ideas and information conveyed by a work. This
principle... applies to all works of authorship. As applied to a factual compilation, as-
suming the absence of original written expression, only the compiler's selection and ar-
rangement may be protected; the raw facts may be copied at will. This result is neither
unfair nor unfortunate. It is the means by which copyright advances the progress of sci-
ence and art.



VANDERBILT LAW REVIEW

patents for a limited number of computer programs, most programs do
not meet the requisite novelty, non-obviousness, or other standards
that are required to get a patent, because most programs usually
contain only incremental differences from previous programs. Several
scholars have explained that the danger of patent protection for
software is that it provides too much protection for too few computer
programs.231 Until recently, however, the copyright paradigm has
given too much protection for too many software designs.2 Certainly,
the recent developments of Sega, Atari, and Computer Associates
support the need for at least some change in the law regarding the
protection of computer programs.

1. Copyright Protection

Many courts have justified copying those parts of a computer
program that contain only the unprotected elements.23 The holdings
in Atari and Sega indicate that at least some modern courts are
willing to use the fair use defense for reverse engineering under
certain circumstances, such as for the purpose of developing a
separate but noninfringing program. Although the Supreme Court
could affirm these decisions and make them law throughout the
circuits, a Congressional mandate would provide more definite and
permanent guidelines. To clarify the requirements and application of
the doctrine under copyright law, therefore, Congress should amend
the Copyright Act as it did in 1980, if computer programs are to
remain in the copyright regime. Until recently, most scholars have
adhered to this view.234  Given all the backlog and gridlock in
Congress, modification of the current law may pass with greater ease
than the sui generis laws that commentators have proposed to date.25

Courts and commentators have set forth additional reasons for
not creating sui generis protection for computer programs.28  First,
Congress has expanded copyright law numerous times to include new

231. Reichman, 42 Vand. L. Rev. at 698 (cited in note 3); John A. Kidwell, Software and
Semiconductors: Why Are We Confused?, 70 Minn. L. Rev. 533, 544-49 (1985).

232. Reichman, 42 Vand. L. Rev. at 698 (cited in note 3).
233. See generally notes 73, 78, 99, and 110.
234. See, for example, Raskind, 47 U. Pitt. L. Rev. at 1175-82 (cited in note 230) (finding that

in 1986, prior to the Whelan decision, basic issues of software protection were being decided
effectively by the courts). See also note 242 for commentators who have rejected the sui generis
approach to protecting software.

235. See note 242; Raskind, 47 U. Pitt. L. Rev. at 1175-82 (cited in note 230).
236. The House Report for the SCPA presents similar reasons for protecting semiconductor

chips under copyright rather than a sui generis law. Semiconductor Chip Protection Act of 1984,
H.R. Rep. No. 98-781, 98th Cong., 2d Sess. 5-11 (1984).

182 [Vol. 47:145



REVERSE ENGINEERING

forms of expression and already has integrated computer programs
into its fold. Next, because Congress should promote certainty and
stability, the enactment of a new law would create an initial up-
heaval. Copyright law is well-established and gives guidance to copy-
right owners and users regarding their respective rights. Addition-
ally, computer programs are more certain to obtain international
protection if they are protected in the United States under the
established copyright law. Furthermore, protecting software under
sui generis laws would introduce more complexity into intellectual
property law. Therefore, retaining protection of computer programs in
copyright law also is more economical. However, although maintain-
ing protection for computer programs under the copyright paradigm
appears to be more expedient, it may cause more serious problems in
the future.

2. Sui Generis Protection

The Sega, Atari, and Altai decisions represent a shift from the
traditional application of full protection for computer programs toward
utilization of the fair use defense under certain circumstances. To
accomplish this change, the courts in each of these cases relaxed or
applied the fair use factors to computer programs. Perhaps the lack of
uniformity in applying the fair use doctrine is as strong an indicator
as any that computer programs do not fit comfortably under the pat-
ent or copyright laws.23 For example, in the software context, the
third fair use factor, which asks the courts to examine the amount and
substantiality of the portion of the copyrighted work used, generally
will weigh against the subsequent developer who almost always must
make an intermediate copy of the computer program to extract
unprotected ideas.23 Courts have altered the fair use defense in an
effort to apply it to software; these alterations may be inappropriate
for other works protected under the Copyright Act. If this trend
continues, courts may erode the fair use doctrine further.

The multiple forms of protection sought for computer programs
indicate that traditional copyright protection is inadequate for soft-
ware.23 Software producers often attempt to obtain additional, differ-

237. See generally Reichman, 17 U. Dayton L. Rev. at 797 (cited in note 118).
238. See Part u7.C.3.
239. Samuelson, 70"Minn. L. Rev. at 514-19 (cited in note 50). Patent laws in combination

with copyright laws, trade secret laws in combination with copyright laws, and patent, copyright,
and trade secret laws all in combination work to protect software. Id. See also Hubco Data Prod.
Corp. v. Management Assistance, Inc., 219 U.S.P.Q. 450, 455-56 (D. Idaho 1983) (holding that

1994] 183



VANDERBILT LAW REVIEW

ent sets of exclusive rights through licensing agreements. 24
0 Although

Section 117 of the Copyright Act allows computer program users to
adapt a computer program if necessary to use or archive it, this nar-
row exception does not permit reverse engineering for the purpose of
analysis or achieving interoperability.

Computer programs are essentially utilitarian works in which
creative expression only decreases efficiency. In this respect, they
closely resemble semiconductor chips, which have been removed from
the copyright law with a sui generis scheme, the Semiconductor Chip
Protection Act of 1984 (SCPA).241 Several scholars have argued that
computer programs are actually a distinctive kind of intellectual
property that warrant a new law that would acknowledge these dif-
ferences from traditional literary works.242  Computer programs are
too machine-like to fit within copyright law and too much like a writ-
ing to fit within patent law.243 Giving copyright protection to computer
programs disrupts the social bargain equilibrium of both patent and
copyright laws.244  A sui generis law for computer programs would
balance successfully public and private interests to reflect the econom-
ics of software protection instead of the general economic principles
underlying copyright and patent laws.245 In addition, a sui generis law
would eliminate the need to distort copyright law further to accommo-
date computer programs and similar technologies.

reverse engineering is permissible under trade secret law but that copyright infringement
occurred as a result of copying a program in the process of studying its content).

240. Samuelson, 70 Minn. L. Rev. at 519 (cited in note 50).
241. 17 U.S.C. §§ 901 et seq. (1988 & Supp. 1992).
242. See generally Pamela Samuelson, Some New Kinds of Authorship Made Possible by

Computers and Some Intellectual Property Questions They Raise, 53 U. Pitt. L. Rev. 685 (1992);
Davidson, 47 U. Pitt. L. Rev. at 1080-100 (cited in note 1) (advocating a sui generis system of
protection for all types of software that resembles the Uniform Commercial Code with general
principles and default provisions rather than complex laws and regulations); Samuelson, 70 Minn.
L. Rev. at 507-28 (cited in note 50); Samuelson, 1984 Duke L. J. at 762-69 (cited in note 20);
Pamela Samuelson and Robert J. Glushko, Intellectual Property Rights for Digital Library and
Hypertext Publishing Systems, 6 Harv. J. L. & Tech. 237 (1993). For a list of other authorities and
commentators who support a sui generis scheme for software, see Samuelson, 70 Minn. L. Rev. at

507 n.184. But see Morton David Goldberg and John F. Burleigh, Copyright Protection for
Computer Programs: Is the Sky Falling?, 17 AIPLA Q. J. 294 (1989) (rejecting the sui generis

approach and explaining that case law has applied traditional copyright principles to computer
programs adequately); Clapes, Lynch, and Steinberg, 34 U.C.LA. L. Rev. at 1575-77 (cited in note
11) (rejecting the need for a sui generis law).

243. Pamela Samuelson, Survey on the Patent/Copyright Interface for Computer Programs,
17 AIPLA Q. J. 173, 283 (1989). Computer programs are not well suited to traditional copyright
protection because the important part of the program is the structure rather than the details that
garnish the work.

244. Samuelson, 70 Minn. L. Rev. at 513 (cited in note 50).
245. Id. at 501-31.

184 [Vol. 47:145



1994] REVERSE ENGINEERING

The strongest argument for adopting a sui generis law for
computer programs is the success of the SCPA.2 46  The SCPA
demonstrates the need for a sui generis law when a newly developed
technology does not fit into patent or copyright law.247 Legislative
history indicates that Congress passed the SCPA to protect
semiconductor chips because they are a utilitarian product that the
Copyright Act could not protect appropriately. 248

The SCPA designates reverse engineering as noninfringing
copying of protected semiconductor chip products in certain situ-
ations.2'4 This statutory provision indicates that Congress has accept-
ed reverse engineering as a standard industry practice for the purpose
of developing new products.2 5

0 Apparently, the Copyright Office also
hesitated to advocate the fair use doctrine to the semiconductor indus-
try for several reasons: the Copyright Act does not extend to utilitar-
ian works; copyright protection is not effective because the fair use
defense cannot accommodate reverse engineering, an industry prac-
tice; and the Copyright Office feared the distortion of the fair use
doctrine through efforts to accommodate reverse engineering. 251 The
SCPA and its history, however, do not address the fair use defense for
disassembly of object code. 25

2

Several advocates have proposed that Congress reconsider the
copyright protection of machine-readable computer programs. 2

5

Instead of extending copyright protection to software, Congress could
adopt a sui generis approach for protecting computer programs in
machine-readable form.254 This new law should distinguish between
piracy and legitimate reverse engineering for the purpose of analysis

246. 17 U.S.C. §§ 901 et seq. The SCPA is a marked departure from traditional copyright
law based on the nature of the products involved. Congress did indicate its intent not to increase
or decrease the scope of copyright law with the passage of SCPA. H.R. Rep. No. 98-781 at 28
(cited in note 236).

247. Samuelson, 70 Minn. L. Rev. at 514 (cited in note 50). Congress created a sui generis
law combining elements of patent, copyright, unfair competition, and trade secret laws to protect
a new form of technology that did not fit neatly into any existing laws.

248. H. R. Rep. No. 98-781 at 8-10 (cited in note 236).
249. 17 U.S.C. § 906.
250. Raskind, 70 Minn. L. Rev. at 385 (cited in note 69).
251. Id. at 392-93.
252. Professor Raskind analogizes the reverse engineering provision of the SCPA to the fair

use doctrine of the Copyright Act. Id. at 389. By contrast, Professor Stern believes that the
legislative history of the SCPA indicates that Congress did not intend reverse engineering to be
considered fair use under copyright law. Stern, 15 Computer L. Rep. at 266 (cited in note 74).
Professor Stern refers to a version of the bill that was not enacted, however, and fails to recognize
that the SCPA does not imnunize all copying against liability for infringement.

253. Samuelson, 70 Minn. L. Rev. at 471 (cited in note 50).
254. Id. at 507-31. See also Samuelson, 1984 Duke L. J. at 692-705 (cited in note 20)

(explaining and criticizing the CONTU Report).



VANDERBILT LAW REVIEW [Vol. 47:145

or achieving interoperability. 255 It also should adopt a slightly differ-
ent test for infringement because the traditional test25 does not ade-
quately identify infringement of software.257 Additionally, if Congress
adopted sui generis protection for computer programs, it could estab-
lish a different set of exclusive rights that are tailored to this subject
matter in order to balance more equitably the rights of software pro-
ducers, software users, and the public.2 8 Indeed, it would be easier to
grant different exclusive rights through a sui generis law than to
modify existing legal standards.259 It also would be appropriate to
grant the exclusive rights for a shorter duration because the commer-
cial lifetime of a computer program usually is shorter than other
literary works,260 therefore making earlier entry into the public do-
main desirable.261

VI. CONCLUSION

By upholding reverse engineering of computer programs under
the defense of the fair use doctrine for the purpose of analysis of non-
protected expression of ideas, two federal circuits have departed from

255. For example, it may be appropriate to allow reverse engineering of object code only if
the object code is unavailable. In addition, courts could permit reverse engineering only for the
purpose of analysis or to achieve interoperability requirements (determining interface specifica-
tions and protocols) with competing hardware or software systems. In addition to requiring a
legitimate purpose, the law could require a substantial showing of effort and investment.

256. The traditional test for infringement is whether a lay observer would regard the two
works as substantially similar enough to conclude that expression has been appropriated. 3
Nimmer on Copyright § 13.03[E][1][a] at 13-75 to -76 (cited in note 1). The problem with this
approach is that most lay observers are computer illiterate and thus may find substantial
similarity where it does not exist or fail to find it where it does exist. Thus, Nimmer advocates a
design or pattern theory to determine infringement of computer programs: a 'comprehensive
nonliteral similarity" constitutes copyright infringement. Id. § 13.03[A][1] at 13-25 to -26.
Recently he has suggested a "successive filtering" test, which is more along the lines of the
Computer Assoc. Intl test. Id. § 13.03[F] at 13-78.26 to -78.30.

257. Samuelson, 70 Minn. L. Rev. at 525 (cited in note 50) (stating that the substantial
similarity portion of the test is appropriate).

258. Id. at 519-20. Professor Samuelson recommends the following exclusive rights: the
right for software developers to make and distribute copies of the protected program (currently
done in copyright law, patent law, and the SCPA) and a limited right to produce derivative works
that do not include all material generated through the use of software (currently only the
copyright paradigm provides this right in 17 U.S.C. § 103). Samuelson, 70 Minn. L. Rev. at 520-
23. She also recommends limits on patent-type exclusive rights by allowing the use of protected
programs as tools to create additional works and allowing the modification of protected programs
to the extent necessary to fulfill the intended purpose of the program. Id. at 524.

259. This observation is especially true if Congress decides not to include a provision giving
exclusive rights to prepare derivative works.

260. Hardware and software innovations occur so quickly that software rapidly becomes
outdated. Even a shorter duration of protection would give the owner enough opportunity to re-
cover investment expenses.

261. If the duration of protection is too long, the software likely will be useless to the public.

186



REVERSE ENGINEERING

the broad infringement requirement for software set forth by the
Third Circuit in Whelan, which provided a high degree of protection to
the copyright owners of computer programs. This shift to a less pro-
tectionist view requires courts to examine not only the general pur-
pose and structure of a computer program but also the details of the
software itself. This approach places a higher burden of proof on the
plaintiff to show infringement, which arguably affects the author's
right of control. Nonetheless, it certainly upholds the primary purpose
of copyright law: to provide additional and higher quality products to
the public.

Because the circuits are split on whether reverse engineering of
software for analysis or interoperability purposes constitutes
infringement, the Supreme Court may grant certiorari in the near
future. The Court's guidance is necessary given the national market
of most hardware and software vendors. It is unlikely that the
Supreme Court would permit reverse engineering when the final
product is substantially similar to the original work. Should the
Supreme Court grant certiori to one of these cases, the Justices should
address carefully both the analysis and interoperability issues of
reverse engineering.

With the rapidly growing technological changes in the
computer industry, the law surrounding these issues will continue to
develop. If these laws remain inconsistent, they will cause great
confusion to consumers and likely will have a negative effect on the
market for such products.2 62 Thus, Congress either should amend the
Copyright Act by adding a clear provision regarding the permissibility
of reverse engineering for the purposes of analysis and achieving
interoperability or create a tailored sui generis law that would be
useful for many years to come. Not only is there a need for uniformity
within the United States, but the United States also needs to consider
carefully the movements of other industrialized countries with regard
to the limits on exclusive copyright protection for computer software.

S. Carran Daughtrey*

262. It is not unusual to find articles in computer journals written by legally trained experts
explaining the rights that competitors have. See, for example, Pamela Samuelson, Computer
Programs and Copyright's Fair Use Doctrine, 36 Communications of the ACM 19 (Sept. 1993).

* The Author wishes to thank Kathryn Spann for her assistance and support, Professor J.
H. Reichman for his excellent classes, and the editors of this Note for their eternal patience and
good nature!

1994]




	Reverse Engineering of Software for Interoperability and Analysis
	Recommended Citation

	Reverse Engineering of Software for Interoperability and Analysis

