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SIMPLICIAL COMPLEXES OBTAINED FROM QUALITATIVE
PROBABILITY ORDERS∗

PAUL H. EDELMAN† , TATIANA GVOZDEVA‡ , AND ARKADII SLINKO‡

Abstract. The goal of this paper is to introduce a new class of simplicial complexes that
naturally generalize the threshold complexes. These will be derived from qualitative probability
orders on subsets of a finite set that generalize subset orders induced by probability measures. We
show that this new class strictly contains the threshold complexes and is strictly contained in the
shifted complexes. We conjecture that this class of complexes is exactly the set of strongly acyclic
complexes, a class that has previously appeared in the context of cooperative games. Beyond the
results themselves, this new class of complexes allows us to refine our understanding of one-point
extensions of a particular oriented matroid.

Key words. simplicial complexes, threshold complex, qualitative probability orders
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1. Introduction. A qualitative probability order in this paper is an order1 on
the set of subsets of [n] = {1, 2, . . . , n} satisfying the axioms

∅ � A

for all nonempty subsets A ⊆ [n] and

A � B ⇐⇒ A ∪ C � B ∪ C

for all subsets A, B, and C of [n] such that (A∪B)∩C = ∅. A qualitative probability
order� is linear if this relation is antisymmetric. These axioms date back to de Finetti
[6], who introduced them in his foundational work on probability. The axiomatic
perspective of qualitative probability was developed because of its epistemological
advantages over traditional probability measures. Qualitative probability orders have
been studied continuously since then in a diverse range of fields, appearing not only
in studies of probability [23], but also in fair division [2] and in the theory of Gröbner
bases [15]. See [17] for a recent survey.

Qualitative probability orders are motivated by the following geometric construc-
tion. Let p = (p1, . . . , pn) be a probability measure on [n], where pi is the probability
of i, and let p(A) =

∑
i∈A pi. The relation A � B ⇔ p(A) ≤ p(B) satisfies the axioms

of a qualitative probability order. Such orders are called representable. Alternatively,
we can think of a hyperplane p1x1 + · · ·+ pnxn = t moving from its position at t = 0
to the position at t = 1 that orders the vertices of the unit n-cube as it goes, so that
x � y for two vertices x and y if vertex x is met by the hyperplane no later than

∗Received by the editors August 16, 2011; accepted for publication (in revised form) August 13,
2013; published electronically October 28, 2013.
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1An order in this paper is any reflexive, complete (every two elements are comparable), and
transitive binary relation.
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SIMPLICIAL COMPLEXES AND PROBABILITY ORDERS 1821

vertex y. We may then identify the vertices of the n-cube with the subsets of [n] in
the natural way and the resulting order is a qualitative probability order. Fine and
Gill [7] showed that representable qualitative probability orders correspond to regions
that the hyperplane arrangement Hn with normals drawn from {−1, 0, 1}n induce on
the simplex Sn of probability distributions on [n]. Maclagan [15] showed it to be the
discriminantal arrangement of the root system Bn.

In many instances in which combinatorial axioms are used to capture geomet-
ric constructions (matroids, oriented matroids, etc.) there appear exceptional objects
that satisfy the axioms but cannot be obtained from the original construction. The
qualitative probability orders are no exception: those that do not arise from a prob-
ability measure are called nonrepresentable. The first nonrepresentable order arises
when n = 5. Representable orders were characterized by Kraft, Pratt, and Seidenberg
[14] in terms of an infinite collection of cancellation conditions.

Now let us turn to abstract simplicial complexes. Every such complex can be
represented by a set of vertices of the unit cube. Returning to our moving hyperplane
example we note that at any moment in time the set of vertices that the hyperplane
has already met corresponds to a simplicial complex and this complex is a threshold
complex. In a similar vein we can take an arbitrary qualitative probability order and
consider its initial segment, that is, all sets that come earlier than some fixed subset;
it too will be a simplicial complex. This complex is easily seen to be a shifted complex
but whether it is threshold is not so easy to answer. We devote this paper to answering
this question in the negative. We can show that for all n ≥ 26 there exists an initial
segment of a qualitative probability order which is not threshold (Theorem 5.1). This
is the main result of this paper.

It is clear, of course, that in order to obtain a nonthreshold initial segment we
have to start with a nonrepresentable qualitative probability order. However, nonrep-
resentability of the order alone, as was shown by Maclagan [15], does not ensure that
the resulting initial segment is not threshold. Christian, Conder, and Slinko [3] inves-
tigated initial segments of qualitative probability orders that contain exactly half of
all 2n subsets of [n]. (These correspond to constant-sum games.) Using the MAGMA
computing package they showed that for n = 5 and n = 6 all such initial segments are
threshold. This indicates that the required nonrepresentable qualitative probability
order must be on a reasonably large set of atoms and cleverly constructed.

How might we construct such a nonrepresentable order? One way to try is the
following: start with a hyperplane p as above and use it to begin sweeping through
the n-cube. Make sure that p is chosen in such a way that the resulting order is
nonlinear, that is, at some point the hyperplane meets a number of vertices simul-
taneously. Break ties so as to obtain a linear order. If the ties are broken carefully,
the resulting order will be a nonrepresentable qualitative probability. Can one con-
struct a nonrepresentable qualitative probability order in this way which possesses a
nonthreshold initial segment? We show in this paper that the answer is “Yes” for all
n ≥ 26. This example motivates the further study of the complexes that are initial
segments of qualitative probability orders.

Our result, while interesting in its own right, has close connections to simple
games, a special type of cooperative game. A simple game is a partition of the col-
lection of all subsets of a set (which are called coalitions in the game theory context)
into two parts, the losing coalitions and the winning ones, so that the losing coali-
tions form an abstract simplicial complex. Winder [24] defined a natural desirability
relation on coalitions: roughly speaking coalition A is more desirable than coalition
B if A∪C is a winning coalition whenever B ∪C is, for any C. Winder’s desirability
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1822 P. H. EDELMAN, T. GVOZDEVA, AND A. SLINKO

relation is strongly acyclic for weighted threshold simple games, simple games whose
losing coalitions form threshold complexes. Winder [24] constructed a game which
was strongly acyclic but not weighted threshold. Taylor and Zwicker [20, 21], answer-
ing a question of Peleg, constructed a strongly acyclic constant-sum game which is
not weighted threshold. The construction is very complicated and the cardinality of
the finite set in this example is huge. None of these examples are known to result
from a qualitative probability order. Our example gives the first game arising from
a qualitative probability order, which is strongly acyclic and not weighted thresh-
old. Moreover, we conjecture that the initial segments are exactly those simplicial
complexes whose Winder relation is strongly acyclic.

Our result also sheds some light on the one-element extensions of the oriented
matroid M(Bn) associated with the root system Bn consisting of vectors

{ei : 1 ≤ i ≤ n} ∪ {±(ei ± ej) : 1 ≤ i < j ≤ n}

(see, e.g., [1, Ch. 7] for more information). Maclagan [15] has shown that the one-
element extensions of M(Bn) are canonically the same as the linear qualitative prob-
ability orders on [n]. Moreover, the representable one-element extensions are exactly
the representable linear qualitative probability orders. Our result shows that the non-
representable extensions are of two different types, those that have all initial segments
threshold and those that do not. This represents a new way of classifying nonrepre-
sentable one-element extensions ofM(Bn) that may be helpful in analyzing extensions
of other types of oriented matroids.

The structure of the paper is as follows. In section 2 we introduce the basics
of qualitative probability orders. In section 3 we provide the necessary background
on abstract simplicial complexes and introduce the initial segments. It is here that
we show that the initial segments contain the threshold complexes and are strictly
contained in the shifted complexes [13]. We also introduce the collection of conditions
that characterize threshold complexes and show that, for small n, initial segments
satisfy them. Section 4 contains a construction technique that provides us with ex-
amples of nonrepresentable qualitative probability orders. This technique is employed
in section 5 to produce the example of an initial segment that is not threshold. Sec-
tion 6, the last substantive section, introduces ideas from cooperative game theory
in order to state our conjecture characterizing the initial segments. We also provide
some preliminary evidence supporting our conjecture.

Before proceeding, we wish to note one additional goal of this paper. While
well known in other disciplines, much of the work on qualitative probability and
cooperative games has escaped notice in the combinatorics community. We think this
is unfortunate since the ideas are not only attractive but powerful as well. We hope
that this paper will encourage others to investigate these areas where there is a lot of
interesting combinatorics to be done.

2. Qualitative probability orders and discrete cones. In this paper all our
objects are defined on the set [n] = {1, 2, . . . , n}. We denote the set of all subsets of
[n] by 2[n]. An order � on 2[n] is called a qualitative probability order on [n] if

(2.1) ∅ � A

for every nonempty subset A of [n], and � satisfies de Finetti’s axiom, namely, for
each A,B,C ∈ 2[n]

(2.2) A � B ⇐⇒ A ∪ C � B ∪ C whenever (A ∪B) ∩ C = ∅ .
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SIMPLICIAL COMPLEXES AND PROBABILITY ORDERS 1823

These orders also appear in the theory of Gröbner bases in exterior algebras [15],
where they are called Boolean term orders. We write A ≺ B if A � B but not B � A
and A ∼ B if A � B and B � A. We say that sets A and B are tied if A ∼ B.

If � is a qualitative probability order, then A ⊆ B implies A � B (we can add A to
both sides of ∅ � B \A); hence it is a refinement of the partial semiorder by inclusion.
(Notice that it is fairly possible to have a partial semiorder by inclusion which is not
a qualitative probability order. For example, ∅ ≺ 1 ≺ 2 ≺ 3 ≺ 23 ≺ 13 ≺ 12 ≺ 123 is
not a qualitative probability order as 1 ≺ 2 but 23 ≺ 13.)

Given a vector of nonnegative weights w = (w1, . . . , wn) we can define a qualita-
tive probability order on [n] by setting

A � B if and only if w(A) =
∑
a∈A

wa ≤ w(B) =
∑
b∈B

wb.

It is easy to see that � is a qualitative probability order. Any order arising in this
way is called representable, e.g., [8, 17]. Those not obtainable in this way are called
nonrepresentable. Kraft, Pratt, and Seidenberg [14] showed that nonrepresentable
orders exist for all n ≥ 5.

We begin with some standard properties of qualitative probability orders.
Lemma 2.1. Let � be a qualitative probability order on [n]. Suppose A,B,C,D ∈

2[n] are such that A � B, C � D, and B∩D = ∅. Then A∪C � B∪D. Furthermore,
if A ≺ B or C ≺ D, then A ∪ C ≺ B ∪D.

Proof. First, consider the case A ∩ C = ∅. Let B′ = B \ C and C′ = C \ B and
I = B ∩ C. Then, by (2.2), we have

A ∪ C′ � B ∪ C′ = B′ ∪ C � B′ ∪D,

where A ∪ C′ ≺ B′ ∪D if A ≺ B or C ≺ D. We obtain

A ∪ C′ � B′ ∪D ⇔ A ∪C = (A ∪ C′) ∪ I � (B′ ∪D) ∪ I = B ∪D.

Consider the second case when A ∩ C �= ∅. Let A′ = A \ C. By (2.1) and (2.2) we
have A′ � B. Since A′ ∩C = ∅ by the previous case

A ∪C = A′ ∪ C � B ∪ C � B ∪D.

One can check that if either A ≺ B or C ≺ D we will get a strict inequality A ∪C ≺
B ∪D in this case as well.

A weaker version of Lemma 2.1 can be found in [15, Lemma 2.2].
Definition 2.2. A sequence of subsets (A1, . . . , Aj ;B1, . . . , Bj) of [n] of even

length 2j is said to be a trading transform of length j if for every i ∈ [n]

(2.3) |{k | i ∈ Ak}| = |{k | i ∈ Bk}| .

In other words, sets A1, . . . , Aj can be converted into B1, . . . , Bj by rearranging their
atoms.

It is worthwhile to note that for a trading transform (A1, . . . , Aj ;B1, . . . , Bj) it
is perfectly possible that the sequences A1, . . . , Aj or B1, . . . , Bj have repetitions.
Scott [19] gave a useful reformulation of trading transform in terms of characteristic
vectors of subsets: the condition (2.3) can be rewritten as

j∑
i=1

χ(Ai) =

j∑
i=1

χ(Bi).
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1824 P. H. EDELMAN, T. GVOZDEVA, AND A. SLINKO

Definition 2.3. We say that an order � on 2[n] satisfies the kth cancellation
condition CCk if there does not exist a trading transform (A1, . . . , Ak;B1, . . . , Bk)
such that Ai � Bi for all i ∈ [k] and Ai ≺ Bi for at least one i ∈ [k].

The key result (Lemma 0) of [14] can now be reformulated as follows.
Theorem 2.4 (see [14]). A qualitative probability order � is representable if and

only if it satisfies CCk for all k = 1, 2, . . ..
Using the de Finetti axiom and theory of linear orders, Fishburn [8, section 2]

showed that CC2 and CC3 hold for linear qualitative probability orders. With minor
modifications that proof also shows that every qualitative probability order satisfies
CC2 and CC3. Hence, CC4 is the first nontrivial cancellation condition. Kraft,
Pratt, and Seidenberg [14] noticed that for n < 5 all qualitative probability orders
are representable, but for n = 5 there are nonrepresentable ones.

Fishburn [8] observed that every qualitative probability order corresponds to a
unique discrete cone C(�) in T n, where T = {−1, 0, 1}, which is defined as follows.

Definition 2.5. A subset C ⊆ T n is said to be a discrete cone if the following
properties hold:

D1. {e1, . . . , en} ⊆ C, where {e1, . . . , en} is the standard basis of Rn.
D2. {−x,x} ∩ C �= ∅ for every x ∈ T n.
D3. x+ y ∈ C whenever x,y ∈ C and x+ y ∈ T n.
We note that Fishburn [8] requires 0 /∈ C because his orders are antireflexive. In

our case, condition D2 implies 0 ∈ C.
Given two subsets A,B ∈ 2[n] we construct the characteristic vector of this pair

χ(A,B) = χ(A)−χ(B) ∈ T n.
Lemma 2.6. Qualitative probability orders are in a one-to-one correspondence

with discrete cones.
Proof. Given a qualitative probability order � on [n], we define

C(�) = {χ(A,B) ∈ T n | B � A}.

The two axioms of qualitative probability guarantee that C(�) is a discrete cone; see
[8, Lemma 2.1]. Every discrete cone C ⊂ T n gives rise to a qualitative probability
order by the following inverse construction. Every v ∈ C uniquely defines two disjoint
sets A,B ⊆ [n] such that A = {i : vi = 1}, B = {i : vi = −1}, and v = χ(A,B), in
which case we set A � B. By doing this we define comparisons between all disjoint
sets. If two sets A,B ⊆ [n] are not disjoint we define

A � B ⇐⇒ A \B � B \A.

The order � will then automatically satisfy the de Finetti axiom (2.2).
Following Fishburn [8], the cancellation conditions can be reformulated as follows.
Proposition 2.7. A qualitative probability order � satisfies the kth cancellation

condition CCk if and only if for every set {x1,x2, . . . ,xk} of nonzero vectors in C(�)

x1 + x2 + · · ·+ xk = 0

implies that −xi ∈ C(�) for every i = 1, . . . , k.
Given a system of nonnegative weights w and two subsets A,B ⊆ [n] we can

reformulate the fact that w(A) ≥ w(B) as x · w ≥ 0, where x = χ(A,B). Hence,
geometrically, a qualitative probability order � is representable if and only if there
exists a nonnegative vector w ∈ Rn such that

x ∈ C(�) ⇐⇒ w · x ≥ 0 for all x ∈ T n,
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where v · u is the standard inner (dot) product of vectors v and u. That is, �
is representable if and only if every nonzero vector in the cone C(�) lies in the
closed half-space H+

w = {x ∈ Rn | w · x ≥ 0} of the corresponding hyperplane
Hw = {x ∈ Rn | w · x = 0}.

3. Simplicial complexes and their cancellation conditions. In this section
we will introduce the objects of our study: simplicial complexes that arise as initial
segments of a qualitative probability order. Using cancellation conditions for simpli-
cial complexes, we will show that this class contains the threshold complexes and is
contained in the shifted complexes. Proving the strict containment of the threshold
complexes in the initial segments will require an elaborate construction, which will be
developed in the rest of the paper.

Definition 3.1. A subset Δ ⊆ 2[n] is an abstract simplicial complex if it satisfies
the following condition:

if B ∈ Δ and A ⊆ B, then A ∈ Δ.

Subsets that are in Δ are called faces.
Abstract simplicial complexes are in one-to-one correspondence with simple games

as defined by von Neumann and Morgenstern [22]. A simple game is a pair G =
([n],W ), where W is a subset of the power set 2[n] which satisfies the following mono-
tonicity condition:

if X ∈ W and X ⊆ Y ⊆ [n], then Y ∈ W .

The subsets from W are called winning coalitions and the subsets from L = 2[n] \W
are called losing coalitions. The set of losing coalitions L is a simplicial complex. The
reverse is also true: if Δ is a simplicial complex, then the set 2[n]\Δ is a set of winning
coalitions of a certain simple game.

A well-studied class of simplicial complexes is the class of threshold complexes—
mostly as an equivalent concept to the concept of a weighted majority game but also
as threshold hypergraphs [5, 18].

Definition 3.2. A simplicial complex Δ is a threshold complex if there exist
nonnegative reals w1, . . . , wn and a positive constant q such that

A ∈ Δ ⇐⇒ w(A) =
∑
i∈A

wi < q.

The same parameters define a weighted majority game by setting

A ∈ W ⇐⇒ w(A) =
∑
i∈A

wi ≥ q.

This game has the standard notation [q;w1, . . . , wn].
A much larger but still well-understood class of simplicial complexes is shifted

simplicial complexes [11, 12].
Definition 3.3. A simplicial complex is shifted if there exists an order � on the

set of vertices [n] such that for any face F , replacing any of its vertices x ∈ F with a
vertex y such that y � x results in a subset (F \ {x}) ∪ {y} which is also a face.

Shifted complexes correspond to complete2 games [9]. A complete game has an
order � on players such that if a coalition W is winning, then replacing any player

2Sometimes also called linear or directed.
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x ∈ W with a player z such that x � z results in a coalition (W \ {x})∪ {z} which is
also winning.

Definition 3.4. Let � be a qualitative probability order on [n] and K ∈ 2[n].
Then the corresponding initial segment is the set

Δ(�,K) = {X ⊆ [n] | X ≺ K}.

Lemma 3.5. Each initial segment of a qualitative probability order is an abstract
simplicial complex.

Proof. As we commented above, every qualitative probability order is a refinement
of the set-theoretic inclusion. Thus, Δ(�,K) is an abstract simplicial complex.

From now on, an initial segment is a simplicial complex which is an initial segment
of a qualitative probability order.

Cancellation conditions, similar to those defined for qualitative probability orders,
will play the key role in our analysis of simplicial complexes.

Definition 3.6. A simplicial complex Δ is said to satisfy cancellation condition
CC∗

k if there does not exist a trading transform (A1, . . . , Ak;B1, . . . , Bk) such that
A1, . . . , Ak ∈ Δ and B1, . . . , Bk /∈ Δ.

The following lemma is an immediate consequence of the definitions.
Lemma 3.7. Suppose � is a qualitative probability order on [n] and Δ(�,K) is

its initial segment. If � satisfies CCk, then Δ(�,K) satisfies CC∗
k .

Since every qualitative probability order satisfies the conditions CCk with k = 2, 3
[8], we obtain the following corollary.

Corollary 3.8. Every initial segment satisfies CC∗
k for k ≤ 3.

Lemma 3.9 (see [13]). Every initial segment is a shifted complex. Moreover,
there are shifted complexes that are not initial segments.

Proof. Let Δ be a nonshifted simplicial complex. Then it is known to contain
an obstruction of the following form: there are i, j ∈ [n], and A,B ∈ Δ, neither
containing i or j, so that A∪{i} and B∪{j} are in Δ but neither B∪{i} nor A∪{j}
are in Δ [11]. But then (A∪{i}, B∪{j};B∪{i}, A∪{j}) is a trading transform that
violates CC∗

2 . Since all initial segments satisfy CC∗
2 they must all be shifted.

On the other hand, there are shifted complexes that fail to satisfy CC∗
2 and hence

cannot be initial segments. Let Δ be the smallest shifted complex (where shifting is
with respect to the usual ordering) that contains {1, 5, 7} and {2, 3, 4, 6}. Then it is
easy to check that neither {3, 4, 7} nor {1, 2, 5, 6} is in Δ but

({1, 5, 7}, {2, 3, 4, 6}; {3, 4, 7}, {1, 2, 5, 6})

is a trading transform in violation of CC∗
2 .

Similarly, the terminal segment

G(�,K) = {X ⊆ [n] | K � X}

of any qualitative probability order is a complete simple game.
Theorem 2.4.2 of the book [21] can be reformulated to give necessary and sufficient

conditions for a simplicial complex to be threshold.
Theorem 3.10. An abstract simplicial complex Δ ⊆ 2[n] is a threshold complex

if and only if the condition CC∗
k holds for all k ≥ 2.

In Lemma 3.9 we showed that the initial segments are strictly contained in the
shifted complexes. What is the relationship between the initial segments and threshold
complexes?
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Proposition 3.11. The class of threshold complexes and the class of initial
segments of representable qualitative probability orders coincide.

Proof. Let Δ be a threshold complex defined by the weights w1, . . . , wn and a
positive constant q. If there is no subset in [n] with weight exactly q we may choose
a set K whose weight is at least q and the smallest with this property. Then Δ is
the initial segment of the representable qualitative probability order defined by the
weight vector (w1, . . . , wn), and the threshold set K.

Suppose now that � is a qualitative probability order defined by the weights
w1, . . . , wn and K ⊆ [n]. From the definition of a qualitative probability order, for
any set A the relations A ≺ K and w(A) < w(K) are equivalent. We set w(K) =
q. Then the initial segment Δ(�,K) consists of all subsets in [n] whose weight is
strictly smaller than q and hence a threshold complex with weights w1, . . . , wn and the
threshold q.

We thus have the following containments of classes of simplicial complexes:

threshold complexes ⊆ initial segments � shifted complexes.

This leaves us with the question of whether this first containment is strict, i.e.,
whether there are initial segments which are not threshold complexes. A natural
approach for proving that this containment is strict would be to start with a nonrep-
resentable qualitative probability order and extract an initial segment which is not
threshold. However, the following example, adapted from [15, Examples 2.5 and 3.9],
shows that we have to give much thought to the choice of that nonrepresentable order.

Example 3.12. This example gives a nonrepresentable qualitative probability or-
der for which every initial segment is threshold. We start with a representable qual-
itative probability order on [5] given by the vector of weights (7, 10, 16, 20, 22). This
order begins with

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 4 ≺ 5 ≺ · · · ,
where 1 denotes the singleton set {1} and by 12 we mean {1, 2}. Since the qualitative
probability order is representable, every initial segment is a threshold complex. Now
suppose we interchange the order of 12 and 4. The new order, which begins with

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 4 ≺ 12 ≺ 5 ≺ · · · ,
is still a qualitative probability order, but it is no longer representable [15, Exam-
ple 2.5]. With four exceptions, all the initial segments in this new nonrepresentable
qualitative order are initial segments in the original one and, thus, are threshold. One
can easily check that the four new initial segments are all threshold with respect to
the weight vector (8, 9, 12, 15, 18).

One approach to finding an initial segment that is not threshold is to construct
an abstract simplicial complex that violates CC∗

k for some small value of k. As
noted above, all initial segments satisfy CC∗

2 and CC∗
3 , so the smallest condition that

could fail is CC∗
4 . We will now show that for small values of n, namely, for n ≤ 17,

cancellation condition CC∗
4 is satisfied for any initial segment. Later, we will use this

information in constructing a nonthreshold initial segment.
Definition 3.13. Two pairs of subsets (A1, B1) and (A2, B2) are said to be

compatible if the following two conditions hold:

A1 ∩A2 ⊆ B1 ∪B2 and

B1 ∩B2 ⊆ A1 ∪ A2.

If one of these conditions fails, the pair of subsets is called incompatible.
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We will now show that if a trading transform witnesses a failure of CC∗
s for an

initial segment Δ = Δ(�,K) and has some compatible pairs, then CCs−1 fails for �.
Lemma 3.14. Let � be a qualitative probability order on [n], K ⊆ [n], and let

Δ = Δ(�,K) be the corresponding initial segment. Suppose CC∗
s is not satisfied

for Δ and, hence, there exists a trading transform (A1, . . . , As;B1, . . . , Bs) such that
Ai ≺ K � Bj for all i, j ∈ [s]. If pairs (Ai, Bk) and (Aj , Bl) are compatible for some
i, k, j, l ∈ [s], i �= j, and k �= l, then � fails to satisfy CCs−1.

Proof. Let us remove the intersection from the sets of each pair:

Āi = Ai \ (Ai ∩Bk), B̄k = Bk \ (Ai ∩Bk),

Āj = Aj \ (Aj ∩Bl), B̄l = Bl \ (Aj ∩Bl).

Note that

(3.1) Āi ∩ Āj = B̄k ∩ B̄l = ∅.

Indeed, suppose, for example, x ∈ Āi ∩ Āj . Then also x ∈ Ai ∩ Aj and, by the
compatibility of the pairs, x ∈ Bk or x ∈ Bl. If x ∈ Bk, then x /∈ Ai \ (Ai∩Bk), hence
it is impossible for x to be in Āi ∩ Āj . The other case is similar. Note also that, by
Lemma 2.1, we have

(3.2) Āi ∪ Āj ≺ B̄k ∪ B̄l.

Observe that

(Āi, Āj , Am1 , . . . , Ams−2 ; B̄k, B̄l, Br1 , . . . , Brs−2)

is a trading transform, where {m1, . . . ,ms−2} = [s] \ {i, j} and {r1, . . . , rs−2} =
[s] \ {k, l}. Hence, due to (3.1),

(Āi ∪ Āj , Am1 , . . . , Ams−2 ; B̄k ∪ B̄l, Br1 , . . . , Brs−2)

is also a trading transform. This violates CCs−1 since (3.2) holds and Amt ≺ Brt for
all t = 1, . . . , s− 2.

Recall that sets in a trading transform might not be distinct. However, we will
show that if a trading transform (A1, . . . , A4, B1, . . . , B4) witnesses a failure of CC∗

4 ,
then in fact the Ai (respectively, the Bi) are distinct.

Lemma 3.15. Let � be a qualitative probability order on [n], K ⊆ [n], and let
Δ = Δ(�,K) be the respective initial segment. Suppose T = (A1, . . . , A4, B1, . . . , B4)
is a trading transform that witnesses a failure of CC∗

4 for �, that is, Ai ≺ K � Bj

for all i, j ∈ [4]. Then

|{A1, . . . , A4}| = |{B1, . . . , B4}| = 4.

Proof. First, we note that for every i, j, l, k ∈ [4], if i �= k and j �= �, then the pairs
(Ai, Bj) and (Ak, B�) are not compatible. If they were, by Lemma 3.14, the order �
would fail CC3, which is impossible.

Assume, to the contrary, that we have at least two identical coalitions among
A1, . . . , A4 or B1, . . . , B4. Without loss of generality suppose A1 = A2. If all sets
among A1, . . . , A4 are equal, then every atom belongs to each of the four subsets
A1, . . . , A4 which implies that the same is true for B1, . . . , B4 and hence Ai = Bi for
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all i. Since this is not possible there are at least two distinct sets among A1, . . . , A4

and similarly among B1, . . . , B4. Suppose that A1 �= A3 and B1 �= B2.
The pairs (A1, B1), (A3, B2) are not compatible. It means that either A1 ∩ A3 �

B1 ∪B2 or B1 ∩B2 � A1 ∪ A3. Consider the first case; the other one is similar. Let
x be an atom of [n] such that x ∈ A1 ∩ A3 and x /∈ B1 ∪B2. Then

|{i ∈ [4] | x ∈ Ai}| ≥ 3 and |{i ∈ [4] | x ∈ Bi}| ≤ 2.

In other words, at least three sets among A1, . . . , A4 contain x and, at the same time,
at most two sets contain x among B1, . . . , B4. This contradicts T being a trading
transform.

The following characterization will be useful.
Proposition 3.16. Let A1, A2, B1, B2 be four subsets of [n]. Then two pairs

(A1, B1), (A2, B2) are incompatible if and only if there exists p ∈ [n] such that
|χ(A1, B1)

(p) + χ(A2, B2)
(p)| = 2, where v(p) is the pth coordinate of a vector v.

Proof. To have |χ(A1, B1)
(p) + χ(A2, B2)

(p)| = 2, we must have either
χ(A1, B1)

(p) = χ(A2, B2)
(p) = 1 or χ(A1, B1)

(p) = χ(A2, B2)
(p) = −1. The first

case is equivalent to p belonging to p ∈ A1 ∩ A2 but not to B1 ∪ B2. The second
case is equivalent to p belonging to B1 ∩ B2 but not to A1 ∪ A2. This proves the
lemma.

Suppose now that eight subsets A1, . . . , A4 and B1, . . . , B4 of [n] are such that
the sequence

(3.3) T = (A1, . . . , A4;B1, . . . , B4)

is a trading transform. Let us associate an 8×n (0, 1)-matrix M(T ) with it. The rows
of this matrix will be the characteristic vectors χ(A1), χ(A2), χ(A3), χ(A4), χ(B1),
χ(B2), χ(B3), χ(B4), respectively.

Proposition 3.17. Let {i, j, k, �} = {q, r, s, t} = [4]. Then the pairs (Ai, Bq) and
(Aj , Br) are incompatible if and only if there exists a column (a1, . . . , a4, b1, . . . , b4)

T

of matrix M(T ) such that either

ai = aj = bs = bt = 1 and ak = a� = bq = br = 0

or

ai = aj = bs = bt = 0 and ak = a� = bq = br = 1.

In such a case the pairs (Ak, Bs) and (A�, Bt) are also incompatible.
Proof. We may view columns of M(T ) as indexed by [n]. By Proposition 3.16 we

are able to find p ∈ [n] such that |χ(Ai, Bq)
(p) +χ(Aj , Br)

(p)| = 2 which is equivalent
to having one of the two columns described in the proposition.

Consider the following set of 8-dimensional column vectors:

(3.4) U = {v ∈ Z8 | vi ∈ {0, 1} and v1 + v2 + v3 + v4 = v5 + v6 + v7 + v8 = 2}.

This set has an involution v �→ v̄, where v̄ = 1−v. Thus, if v = (1, 1, 0, 0, 0, 0, 1, 1)T ,
then v̄ = (0, 0, 1, 1, 1, 1, 0, 0)T . There are 36 vectors in U and they are split into 18
nonintersecting pairs {v, v̄}.

We note that the two vectors in Proposition 3.17 whose existence in M(T ) is
equivalent to the incompatibility of (Ai, Bq) and (Aj , Br) belong to the same pair. It

D
ow

nl
oa

de
d 

10
/1

3/
14

 to
 1

29
.5

9.
11

0.
10

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1830 P. H. EDELMAN, T. GVOZDEVA, AND A. SLINKO

is easily seen that the incompatibility of (Ak, Bs) and (A�, Bt) leads to the same two
conditions.

Theorem 3.18. Let n ≤ 17 and � be a qualitative probability order on [n]. Then
for every K ⊆ [n] the initial segment Δ = Δ(�,K) satisfies CC∗

4 .
Proof. Suppose T = (A1, A2, A3, A4;B1, B2, B3, B4) is a trading transform wit-

nessing a failure of CC∗
4 . Since Ai ≺ K � Bj for all i, j ∈ [4] we have Ai �= Bj . Now

by Lemma 3.15 we conclude that all eight sets of T are distinct. Since � satisfies
CC3, Lemma 3.14 implies that for every choice of indices such that i �= j, q �= r the
pairs (Ai, Bq) and (Aj , Br) are incompatible. There are 36 such incompatible pairs,
so by Proposition 3.17 the matrix M(T ) must have at least 18 columns.

While no initial segment on fewer than 18 atoms can fail CC∗
4 , we will show that

there exists such an initial segment on 26 atoms. This will demonstrate that the class
of initial segments strictly contains the class of threshold complexes. The next two
sections will be devoted to the construction of this example. It will be based on the
construction that converts a representable nonlinear qualitative probability order into
a linear one by breaking ties.

4. Constructing new qualitative probability orders from nonlinear rep-
resentable ones by breaking ties. To find an initial segment that is not threshold,
we will start with a nonlinear representable qualitative probability order �. The idea
is to break ties in this nonlinear order judiciously so as to obtain a linear order that
possesses an initial segment violating CC∗

4 . In other words we will be coarsening �
until it becomes linear. This coarsening procedure is better discussed in the language
of discrete cones.

Let � be a representable nonlinear qualitative probability order on [n] with un-
derlying weight vector w. Then all vectors of the discrete cone C(�) lie in the closed
half-space {x ∈ Rn | w · x ≥ 0} of Rn bounded by the hyperplane Hw = {x ∈ Rn |
w · x = 0}.

The set S(�) = Hw ∩ C(�) consists of all characteristic vectors that correspond
to the equivalence relation. More specifically, if x ∈ S(�), then there are A,B ⊆ [n]
such that A ∼ B and x = χ(A,B). It is exactly this part of the discrete cone that
we would like to thin out. Indeed, if x ∈ S(�), then −x is a vector of S(�) as well.
Since the discrete cone of a linear qualitative probability order contains exactly one
of these vectors we need to remove x or −x from C(�). This will be equivalent to
breaking the tie A ∼ B one way or another. In order to obtain a discrete cone that
corresponds to a linear qualitative probability order we may need to remove several
vectors of S(�). If the operation is successful, the new linear order � corresponding
to the new discrete cone will preserve all strict comparisons of the old one, namely,
if A ≺ B, then A � B. The main question is, what are the conditions under which a
set of vectors of S(�) can be removed from C(�)?

What can prevent us from removing a vector of S(�) from C(�)? It is intuitively
clear that we cannot remove a vector x = χ(A,B) if the set comparison A � B
corresponding to it is a consequence of those remaining. We need to consider what a
consequence means formally.

There are at least two ways in which one set comparison may imply another
one. The first is by means of the de Finetti condition. This, however, is already built
into the definition of the discrete cone as χ(A,B) = χ(A ∪ C,B ∪ C). Another way
in which a comparison may be implied from two others is transitivity. This has a
nice algebraic characterization. If C � B and B � A, then by transitivity we can
conclude that C � A. In terms of the discrete cone this means that if χ(A,B) and
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χ(B,C) are in a discrete cone, then χ(A,C) is in the discrete cone too. However,
χ(A,C) = χ(A,B) + χ(B,C). This leads us to the following definition. Following
Christian, Conder, and Slinko [4], define a restricted sum for vectors in a discrete
cone C. Let u,v ∈ C. Then

u⊕ v =

{
u+ v if u+ v ∈ T n,

undefined if u+ v /∈ T n.

Fishburn [8, Lemma 2.1] showed that the transitivity of a qualitative probability
order is equivalent to closedness of its corresponding discrete cone with respect to the
restricted addition (without formally defining a discrete cone). The axiom D3 of the
discrete cone can be rewritten as follows:

D3. x⊕ y ∈ C whenever x,y ∈ C and x⊕ y is defined.
Note that the restricted sum is not associative.

Theorem 4.1 (construction method). Let � be a representable qualitative prob-
ability order on [n] and w be its weight vector. Suppose � is not linear. Let S(�) be
the set of all vectors of C(�) which lie in the hyperplane Hw. Suppose S(�) = X ∪Y
is a partition of S(�) into a union of two disjoint subsets X and Y such that

(i) Y ∩ {e1, . . . , en} = ∅,
(ii) X ∩ {s,−s} �= ∅ for every s ∈ S(�),
(iii) X is closed under the operation of restricted sum, i.e., x ⊕ y ∈ X whenever

x,y ∈ X and x⊕ y is defined.
Then CY = C(�) \ Y is a discrete cone in T n.

Proof. By (i) we conclude that CY satisfies D1 as none of the {e1, . . . , en} can be
eliminated. By (ii) we conclude that for every x either x or −x remains in CY , hence
D2 is also satisfied. Suppose now we have x,y ∈ CY . Suppose that at least one of
them, say, x is not in S(�), i.e., x · w > 0. Then (x + y) · w = x · w + y · w > 0.
As this element does not belong to S(�) it could not be in Y . So D3 is in this case
satisfied. Therefore if x ⊕ y belonged to C(�) it would also remain in CY . If both
x,y belong to CY and hence to X , then D3 follows from (iii).

In the examples below we follow the notation of Theorem 4.1.
Example 4.2 (successful coarsening). This example is based on Example 5 of [10].

The vector of weights (1, 2, 5, 6, 10) defines a qualitative probability order � on [5].
Note that this order is not linear. We want to break all ties in � and to construct a
linear qualitative probability order � which retains all strict comparisons of �. Let
us show the existence of �.

Consider the four equivalences in �,

13 ∼ 4, 14 ∼ 23, 34 ∼ 15, and 25 ∼ 134.

All equivalences of � follow from the four given above by the de Finetti axiom:

13 ∼ 4 implies 123 ∼ 24, 135 ∼ 45, 1235 ∼ 245;

14 ∼ 23 implies 145 ∼ 235;

34 ∼ 15 implies 234 ∼ 125;

25 ∼ 134 has no consequences.

Let u1 = χ(13, 4) = (1, 0, 1,−1, 0), u2 = χ(14, 23) = (1,−1,−1, 1, 0), u3 = χ(34, 15) =
(−1, 0, 1, 1− 1), and u4 = χ(25, 134) = (−1, 1,−1,−1, 1). Then

S(�) = {±u1,±u2,±u3,±u4}
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and X = {u1,u2,u3,u4} is closed under the restricted addition as ui ⊕ uj is unde-
fined for all i, j ∈ [4]. Hence, by Theorem 4.1, we can remove the set Y = −X =
{−u1,−u2,−u3,−u4} from the cone C(�) and still get a qualitative probability or-
der. The new order � corresponds to the discrete cone CY and is linear.

Example 4.3 (unsuccessful coarsening). This example is a simplified variant of a
Gabelman simple game of order 3 [20, 21]. The vector of weights (1, 2, . . . , 9) defines
the qualitative probability order� on [9]. Note that each atom i ∈ [9] has the weight i.

Consider a 3× 3 square with an atom in every cell:

2 7 6
9 5 1
4 3 8

.

The sum of numbers in every row is equal to 15. The sum of numbers in every column
is 15 as well. Hence, in the qualitative probability order � we have the following
equivalences:

249 ∼ 357 ∼ 168 ∼ 267 ∼ 159 ∼ 348.

Suppose that we want to construct a qualitative probability order � based on �
for which A � B, where

A ∈ {249, 357, 168} and B ∈ {267, 159, 348}.

Let us show that such order � does not exist.
Consider the vectors

x1 = (0, 0, 0,−1, 0, 1, 1, 0,−1) = χ(267, 249),

x2 = (1, 0,−1, 0, 0, 0,−1, 0, 1) = χ(159, 357),

x3 = (−1, 0, 1, 1, 0,−1, 0, 0, 0) = χ(348, 168).

One can see that {±x1,±x2,±x3} ⊂ S(�). We want to drop vectors −x1,−x2,−x3

from the cone C(�) while leaving the set {x1,x2,x3} there. So if Y is a set to be
removed, then −x1,−x2,−x3 ∈ Y . By Theorem 4.1 the set X = S(�) \ Y should
be closed under the restricted sum. However x1,x2 ∈ X but x1 ⊕ x2 = −x3 ∈ Y .
Therefore, there is no qualitative probability order with the desired properties.

5. Threshold simplicial complexes and initial segments. In this section we
show that the class of initial segments is not equal to the class of threshold simplicial
complexes.

Theorem 5.1. The class of threshold simplicial complexes is strictly contained
in the class of initial segments.

Proof. Here we give only an outline of the proof. All missing bits and pieces
will be gradually filled. We will start with choosing a representable linear qualitative
probability order � on [18]. We will then extend it to a representable nonlinear
qualitative probability order �′ on [26]. A distinguished feature of �′ will be the

existence of eight sets A†
1, . . . , A

†
4, B

†
1, . . . , B

†
4 such that

(5.1) (A†
1, A

†
2, A

†
3, A

†
4;B

†
1, B

†
2, B

†
3, B

†
4)

is a trading transform and all eight sets involved in it are tied in �′. The linear
qualitative probability order � on [26] will be obtained by breaking those ties in �′

so that in the new order � we will have a sequence of strict inequalities

A†
1 � A†

2 � A†
3 � A†

4 � B†
1 � B†

2 � B†
3 � B†

4.
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SIMPLICIAL COMPLEXES AND PROBABILITY ORDERS 1833

Then (5.1) will witness a failure of CC∗
4 for � and the initial segment Δ(�,K) with

K = B†
1 will not be threshold by Theorem 3.10.

5.1. The construction of �. It will involve several steps.
Step 0. First, we define � on [18]. Let w1, . . . , w18 be arbitrarily chosen positive

real numbers from the interval [0, 1] that are linearly independent over Z. Let � be a
representable linear qualitative probability order on [18] defined by the weight vector
w = (w1, . . . , w18).

Step 1. We will again make use of the set U ⊂ R8 defined in (3.4). As we know, it
splits into a union of 18 pairs {v, v̄}, v ∈ U . Let M be an 8× 18 matrix with exactly
one column from each of those 18 pairs. By A1, . . . , A4, B1, . . . , B4 we denote the sets
whose characteristic vectors are equal to the rows M1, . . . ,M8 of M , respectively. We
note that

T = (A1, . . . , A4;B1, . . . , B4)

is a trading transform since by the construction every i ∈ [18] will be a member
of exactly two sets A1, . . . , A4 and exactly two sets B1, . . . , B4. By construction
M = M(T ).

Step 2. We add new atoms {19, . . . , 26} and enlarge the setsA1, . . . , A4, B1, . . . , B4

forming supersets A†
1, . . . , A

†
4, B

†
1, . . . , B

†
4, respectively, so that their characteristic vec-

tors are the rows of the following augmented matrix:

(5.2) M † =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ(A†
1)

χ(A†
2)

χ(A†
3)

χ(A†
4)

χ(B†
1)

χ(B†
2)

χ(B†
3)

χ(B†
4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1...18 19 20 21 22 23 24 25 26

χ(A1)
χ(A2)
χ(A3)
χ(A4)

I I

χ(B1)
χ(B2)
χ(B3)
χ(B4)

J I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where I is the 4× 4 identity matrix and

J =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ .

We note that A†
i is the only superset of Ai among A†

1, . . . , A
†
4, B

†
1, . . . , B

†
4 and a similar

thing can be said about B†
i . So the mapping

(5.3) † : D �→ D†

on {A1, . . . , A4, B1, . . . , B4} is then well defined. This construction secures that the
sequence

(5.4) T † = (A†
1, A

†
2, A

†
3, A

†
4;B

†
1, B

†
2, B

†
3, B

†
4)

continues to be a trading transform. Hence M † = M(T †).
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1834 P. H. EDELMAN, T. GVOZDEVA, AND A. SLINKO

Step 3. We extend now � to a qualitative probability order �′ on [26] by
giving weights w19, . . . , w26 to atoms {19, . . . , 26} in such a way that each of the

sets A†
1, . . . , A

†
4, B†

1, . . . , B
†
4 has the same weight N relative to the new vector of

weights w′ = (w1, . . . , w26), where N is a sufficiently large number (to be justified in
Lemma 5.5). Then the new qualitative probability order �′ on [26] is not linear since

A†
1, . . . , A

†
4, B

†
1, . . . , B

†
4 are tied.

Step 4. Let us define

Ω′ = {χ(C,D) | C,D ∈ {A†
1, . . . , A

†
4, B

†
1, . . . , B

†
4} and D precedes C in (5.4)}.

We show that S(�′) = Ω′∪−Ω′ (Lemma 5.5) and that Ω′ is closed under the operation
of a restricted sum (Lemma 5.4). Moreover since the components ofw′ are all nonzero,
no vector ei can satisfy ei ·w′ = 0. Hence Ω′ satisfies conditions (i), (ii), (iii) for the
set X of Theorem 4.1. By that theorem we conclude that C(�′) \ −Ω′ is a discrete
cone which gives rise to a linear qualitative probability order � on [26], for which

A†
1 � A†

2 � A†
3 � A†

4 � B†
1 � B†

2 � B†
3 � B†

4,

as required.
Note that we have a significant degree of freedom in this construction. The matrix

M can be chosen in 218 possible ways and the initial linear qualitative probability order
� was almost arbitrary.

5.2. Justification of the construction. We start with a justification of Step 3.
Lemma 5.2. Let K > 1026 and N > 8K. Then the weights

w19 = N −K − (−χ(B1, A4) + χ(A1)) ·w,

w20 = N −K − (−χ(B1, A4)− χ(B2, A1) + χ(A2)) ·w,

w21 = N −K − (−χ(B1, A4)− χ(B2, A1)− χ(B3, A2) + χ(A3)) ·w,

w22 = N −K − χ(A4) ·w,

w23 = K − χ(B1, A4) ·w,

w24 = K − (χ(B1, A4) + χ(B2, A1)) ·w,

w25 = K − (χ(B1, A4) + χ(B2, A1) + χ(B3, A2)) ·w,

w26 = K

(5.5)

are positive. Furthermore, the eight sets of the sequence (5.4) are tied having weight
N relative to the vector of weights w′ = (w1, . . . , w26).

Proof. To find weights w19, . . . , w26 such that all sets of the sequence (5.4) have
weight N , we need to solve the following system of linear equations:

(5.6)

[
I I
J I

]⎡⎢⎣
w19

...
w26

⎤
⎥⎦ = N1−M ·w,

where 1 = (1, . . . , 1)T ∈ Z8. The matrix of this system has rank 7. Indeed the only
relation between its rows would be that the sum of 4 first rows is equal to the sum of
the 4 remaining rows. The augmented matrix of the system has the same rank since
the same relation between rows exist in both matrix M and column vector N1.

Therefore, the system (5.6) is consistent and there is one free variable in this
system. Choose w26 as this free variable and let us give it value K. Now we express
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SIMPLICIAL COMPLEXES AND PROBABILITY ORDERS 1835

all other weights w19, . . . , w25 (dependent variables) in terms of w26 = K and get
(5.5). First we note that K is large enough to ensure that w23, . . . , w26 are positive.
Then we note that N is large enough to ensure that w19, . . . , w22 are positive.

We turn to justification of Step 4. Define the following subset of T 18:

Ω = {χ(C,D) | C,D ∈ {A1, . . . , A4, B1, . . . , B4} and D† precedes C† in (5.4)}.

Note that the notation χ(Y ) and χ(Y, Z) from now on gets ambiguous as it may
denote a vector of Z18, Z26, or even Z8. However, the dimension of the vector will
always be clear from the context.

We will need the following.
Lemma 5.3. For every partition [4] = {i, j} ∪ {k, �} there exists p ∈ [18] such

that

|χ(Ai, Ak)
(p) + χ(Aj , A�)

(p)| = |χ(Bi, Bk)
(p) + χ(Bj , B�)

(p)| = 2.

Proof. Without loss of generality we may assume that our partition is [4] =
{1, 2} ∪ {3, 4}. Then either v = (0, 0, 1, 1, 0, 0, 1, 1)T or v̄ = (1, 1, 0, 0, 1, 1, 0, 0)T is
among the columns of M . Choose the atom p ∈ [18] which corresponds to this
column.

Lemma 5.4. Ω′ is closed under the operation of restricted sum.
Proof. We will extend the mapping (5.3) to a one-to-one correspondence between

Ω and Ω′, namely, v = χ(C,D) ∈ Ω corresponds to the unique v† = χ(C†, D†) ∈ Ω′.
We note that if u⊕ v is undefined for u,v ∈ Ω, then u† ⊕ v† is undefined as well.

Let u and v be any two vectors in Ω. Without loss of generality, we can distinguish
five cases.

Case 1. u = χ(Bi, Bj), v = χ(Bk, Bm) or u = χ(Ai, Aj), v = χ(Ak, Am), where
j = k or i = m. Suppose j = k (the other case is similar). Then u+ v = χ(Bi, Bm).
Since i > j and j > m we have i > m. This implies that χ(Bi, Bm) belongs to Ω.
Therefore, u⊕ v ∈ Ω.

Case 2. u = χ(Bi, Aj) and v = χ(Bk, Am), where i �= k and j �= m. Then by
Proposition 3.17 the pairs χ(Bi, Aj) and χ(Bk, Am) are not compatible. In this case,
by Lemma 3.16, the sum u⊕ v is undefined.

Case 3. u = χ(Bi, Aj), v = χ(Bi, Am) or u = χ(Bj , Ai), v = χ(Bm, Ai), where
j �= m. Consider the first case; the other one is similar. First choose k ∈ [4] \ {i}.
By Proposition 3.17 pairs χ(Bi, Aj) and χ(Bk, Am) are not compatible. Then, by
Lemma 3.16, there is p ∈ [18] such that |χ(Bi, Aj)

(p) + χ(Bk, Am)(p)| = 2. However,
in this case we must have χ(Bi, Bk)

(p) = 0. Hence, the sum u⊕ v is undefined as the
sum χ(Bi, Aj)+χ(Bk, Am)+χ(Bi, Bk) has the absolute value of 2 at pth coordinate.

Case 4. u = χ(Bi, Bj), v = χ(Bk, Bm) or u = χ(Ai, Aj), v = χ(Ak, Am), where
{i, j, k,m} = [4]. By Lemma 5.3, the sum u⊕ v is undefined.

Case 5. u = χ(Bi, Bj), v = χ(Bk, Bm) or u = χ(Ai, Aj), v = χ(Ak, Am),
where i = k or j = m. If i = k and j = m, then u ⊕ v is undefined. Con-
sider the case i = k, j �= m. Then u = χ(Bi, Bj), v = χ(Bi, Bm). Let s =
[4] \ {i, j,m}. By Lemma 5.3 applied to (Bi, Bj), (Bs, Bm), there is p ∈ [18] such that
2 = |χ(Bi, Bj)

(p) + χ(Bs, Bm)(p)| = |χ(Bi, Bj)
(p) + χ(Bs, Bm)(p) + χ(Bi, Bs)

(p)| =
|u(p) + v(p)| as χ(Bi, Bs)

(p) = 0 in this case. Hence, u⊕ v is undefined.
And here comes the last bit of justification of Step 4.
Lemma 5.5. S(�′) = Ω′ ∪ −Ω′.
Proof. Assume, to the contrary, that there are two sets C,D ⊆ [26] that have

equal weights relative tow′ but χ(C,D) /∈ Ω′∪−Ω′. The sets C and D have to contain
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some of the atoms from [26] \ [18], since w1, . . . , w18 are linearly independent over Z.
Let C = C1 ∪C2 and D = D1 ∪D2, where C1, D1 ⊆ [18] and C2, D2 ⊆ [26] \ [18] with
C2 and D2 being nonempty. Since the weights of C and D are equal, we have

0 = χ(C,D) ·w′ = χ(C1, D1) ·w + χ(C2, D2) ·w+,

where w+ = (w19, . . . , w26)
T . By (5.5), we can express weights w19, . . . , w26 as linear

combinations with integer coefficients of N,K, and w1, . . . , w18 obtaining

χ(C2, D2) ·w+ =

(
4∑

i=1

γiχ(Ai) +

4∑
i=1

γ4+iχ(Bi)

)
·w + β1N + β2K,

where γi, βj ∈ Z.
The expression in brackets on the right-hand side of this equation is a vector with

integer entries. Let us denote this vector by α. Then

(5.7) χ(C2, D2) ·w+ = α ·w + β1N + β2K.

Let us find a bound for coordinates of α. An arbitrary vector χ(X,Y ), by definition,
has coordinates in the set {−1, 0, 1}. Equations (5.5) therefore imply that every γi is
smaller than or equal to 7. Therefore αi ≤ 56 for every i ∈ [18]. We note also that
|β1| ≤ 4 and |β2| ≤ 8.

Now we may express χ(C,D) · w′, which is equal to zero, in terms of w, α, K,
and N :

0 = χ(C,D) ·w′ = (χ(C1, D1) + α) ·w + β1N + β2K.

Then

|(χ(C1, D1) + α) ·w| ≤ 57
∑
i∈[18]

wi < 1026.

We recap that K was chosen to be greater than 1026 and N is greater than 8K. So
β1N + β2K = 0 if and only if β1 = β2 = 0. In particular, if β1 or β2 is nonzero, then
|β1N + β2K| is a very large number, which cannot be canceled out by (χ(C1, D1) +
α) · w. Hence β1N + β2K = 0 and β1 = β2 = 0. Weights w1, . . . , w18 are linearly
independent, so for arbitrary b ∈ Z18 the dot product b ·w can be zero if and only if
b = 0. Hence

w′(C) = w′(D) if and only if χ(C1, D1) = −α and β1 = 0, β2 = 0.

Taking into account that χ(C1, D1) is a vector from T 18, we obtain that α ∈ T 18.
Hence

α /∈ T 18 =⇒ w′(C) �= w′(D).

What is now left is to justify the following two claims.
Claim 5.6. χ(C1, D1) ∈ Ω ∪ −Ω implies χ(C,D) ∈ Ω′ ∪−Ω′.
Claim 5.7. If α ∈ T 18, then α ∈ Ω ∪−Ω.
The proofs of Claims 5.6 and 5.7 are given in the appendix. Now let us show how

with the help of these two claims the proof of Lemma 5.5 can be completed. The sets
C and D have the same weight and this can happen only if α is a vector in T 18. By
Claim 5.7 α ∈ Ω ∪ −Ω. The characteristic vector χ(C1, D1) is equal to −α, hence
χ(C1, D1) ∈ Ω ∪ −Ω. By Claim 5.6 we get χ(C,D) ∈ Ω′ ∪−Ω′.
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6. Acyclic games and a conjectured characterization. So far we have
shown that the initial segments strictly contain the threshold complexes and are
strictly contained within the shifted complexes. In this section we introduce some
ideas from the theory of simple games to formulate a conjecture that characterizes
initial segments. The idea in this section is to start with an abstract simplicial com-
plex and see if there is a natural relation available on [n] which gives a qualitative
probability order and has the original complex as an initial segment. We suggest
the Winder relation (or Winder desirability relation in [21]) for this role. Threshold
logicians considered this relation in the context of switching functions. Apparently
the relation is due to Winder; see [24, 16, 21].

Let Δ ⊆ 2[n] be a simplicial complex. Define the Winder relation, ≤W , on 2[n]

by A ≤W B if and only if for every Z ⊆ [n] \ ((A \B) ∪ (B \A)) we have that

(6.1) (A \B) ∪ Z /∈ Δ =⇒ (B \A) ∪ Z /∈ Δ.

The name Winder desirability relation becomes clear if we pass to the related
simple game G = ([n],W ), where the set of winning coalitions W = 2[n] \Δ. We may
now rewrite (6.1) as follows:

(A \B) ∪ Z ∈ W =⇒ (B \A) ∪ Z ∈ W.

This means that the set of players A \B is a less desirable coalition than B \A: if a
coalition Z wins merging with A \B, then it will also win merging with B \A.

We also define the Winder existential relation, ≺W , on 2[n] to be

A ≺W B ⇐⇒ It is not the case that B ≤W A.

Both ≤W and ≺W are far from being transitive (see, e.g., [21, Proposition 4.7.1])
and may even have cycles, as the following example demonstrates.

Example 6.1. Let us consider the Fano plane with 7 points (shown below) and de-
fine the simplicial complex Δ ⊂ [7] by Δ = {X ⊂ [7] | X does not contain any lines}.

The Winder existential relation is cyclic:

12 ≺W 35 ≺W 46 ≺W 12.

On the other hand a large class of weighted majority games [24, 21] has an acyclic
Winder existential relation. Hence, by duality, there are plenty of abstract simplicial
complexes with acyclic Winder existential relation.
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Definition 6.2. A simplicial complex Δ is called strongly acyclic if there are no
k-cycles

A1 ≺W A2 ≺W · · ·Ak ≺W A1

for any k in the Winder existential relation.
The question of finding necessary and sufficient conditions for a simple game

to have an acyclic desirability relation has attracted significant attention. Winder
[24] constructed the first example of nonweighted switching function for which ≺W

is acyclic. Peleg asked if any constant-sum simple game (i.e., a game in which half
of all coalitions were winning and half of them were losing) with complete desirabil-
ity relation and strongly acyclic desirability relation is a weighted majority game.
This question was answered negatively in [20] (see also [21, section 4.10]), but the
cardinality of the game in that example is very large (and not even specified).

Note that Taylor and Zwicker [21] prove that the strongly acyclic complexes satisfy
the cancellation conditions CC∗

2 and CC∗
3 but can fail to satisfy CC∗

4 [21, Corollary
4.9.9 and Corollary 4.9.10] This is exactly how the initial segments behave. At the
moment the theory of simple games does not have a conjecture about the structure
of strongly acyclic games. We provide such a conjecture.

Conjecture 1. A simplicial complex Δ is an initial segment if and only if it is
strongly acyclic.

An equivalent companion conjecture relates to games.
Conjecture 2. A simple game G is a terminal segment of a qualitative proba-

bility order if and only if this game is strongly acyclic.
Our evidence in favor of Conjecture 1 is based on the fact that every initial

segment is strongly acyclic.
Theorem 6.3. Suppose � is a qualitative probability order on [n] and K ∈ 2[n].

Then the initial segment Δ(�,K) is strongly acyclic.
Proof. Let Δ = Δ(�,K). By definition A ≺W B if and only if there exists a

Z ∈ [n] \ ((A \B) ∪ (B \A)) such that (A \B) ∪ Z ∈ Δ and (B \A) ∪ Z /∈ Δ. Since
Δ is an initial segment it follows that

(A \B) ∪ Z ≺ (B \A) ∪ Z,

which, by the de Finetti’s axiom (2.2), implies

A \B ≺ B \A

and hence, again by the de Finetti’s axiom (2.2),

A ≺ B.

Thus an m-cycle

A1 ≺W · · · ≺W Am ≺W A1

in Δ would imply an m-cycle

A1 ≺ · · · ≺ Am ≺ A1,

which contradicts ≺ being a total order.
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Conjecture 1 leads us to a slightly stronger version.
Conjecture 3. If Δ is strongly acyclic, then there exists an extension of ≺W to

a qualitative probability order.
Below we give two lemmas that provide us some support for this belief. We show

that the Winder existential relation on a simplicial complex Δ satisfies de Finetti’s
axiom together with the property A ≺W B if A ∈ Δ and B /∈ Δ.

Lemma 6.4. For any Δ, the Winder existential relation ≺W satisfies the property

A ≺W B ⇐⇒ A ∪D ≺W B ∪D

for all D disjoint from A ∪B.
Proof. See [21, Proposition 4.7.8].
Lemma 6.5. Suppose Δ ⊆ 2[n] is a simplicial complex. For every A,B ∈ 2[n] if

A ∈ Δ and B /∈ Δ, then A ≺W B.
Proof. Let Z = A ∩B. Then

(A \B) ∪ Z = A ∈ Δ and (B \A) ∪ Z = B /∈ Δ,

so A ≺W B.
What are the barriers to proving Conjecture 3? The Winder relation need not

be transitive. In fact there are examples of threshold complexes for which ≺W is not
transitive [21, Proposition 4.7.3]. Thus one would have to work with the transitive
closure of ≺W , which does not seem to have a tractable description. In particular we
do not know if the analogue of Lemma 6.4 holds for the transitive closure of ≺W .

7. Appendix. Here the reader may find the proofs of Claims 5.6 and 5.7. Let
us fix some notation first. Suppose b ∈ Zk and xi ∈ Zn for i ∈ [k]. Then we define
the product

b ∗ (x1, . . . ,xk) =
∑
i∈[k]

bixi.

It resembles the dot product. The difference is that the second argument is not a
vector but a sequence of vectors. We need the following technical facts and their
corollaries.

Fact 7.1. Suppose a ∈ Z5 and {s, t, u, v} = {i, j, k, �} = [4]. Let

v = a ∗ (χ(Bs, Ai), χ(Bt, Aj), χ(Bu, Ak), χ(Ai, A�), χ(Aj , Ak)).

If v ∈ T 18, then a belongs to the following set:

Q ={(0, 0, 0, 0, 0), (±1, 0, 0, 0, 0), (0,±1, 0, 0, 0), (0, 0,±1, 0, 0), (0, 0, 0,±1, 0),

(0, 0, 0, 0,±1), (±1, 0, 0,±1, 0), (0,±1, 0, 0,±1), (0, 0,∓1, 0,±1),

(0,±1,∓1, 0,±1), (±1,±1,±1, 0, 0), (±1,±1,±1,±1, 0), (±2,±1,±1,±1, 0)}.

Proof. In the construction of matrix M the first four rows and the last four
rows can be arbitrarily permuted. Hence without loss of generality we may consider
(s, t, u, v) = (i, j, k, l) = (1, 2, 3, 4). Then

v = a ∗ (χ(B1, A1), χ(B2, A2), χ(B3, A3), χ(A1, A4), χ(A2, A3)).

By Proposition 3.17 the pairs (B1, A3) and (B2, A2) are not compatible. Then, there
exists an atom p that belongs to B1 ∩B2 (or A2 ∩A3), but p /∈ A2 ∪A3 (p /∈ B1 ∪B2,
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respectively). By construction, we have exactly two copies of every atom among
A1, . . . , A4 and B1, . . . , B4. Thus, the atom p belongs to A1 ∩ A4 (B3 ∩ B4) and
doesn’t belong to B3 ∪B4 (A1 ∪A4). The table below illustrates both possible cases;
the first row corresponds to the case when p ∈ B1 ∩ B2 and the second corresponds
to the case when p ∈ A2 ∩ A3:

χ(A1) χ(A2) χ(A3) χ(A4) χ(B1) χ(B2) χ(B3) χ(B4)
pth 1 0 0 1 1 1 0 0

coordinate 0 1 1 0 0 0 1 1

Then at pth position we have v(p) = ±a2, and hence a2 ∈ T . By Proposition 3.17 the
pairs

((B1, A3), (B2, A2)), ((B1, A2), (B3, A3)), ((B2, A2), (B4, A3)), ((B3, A3), (B4, A2)),

((B1, A3), (B2, A4)), ((B1, A2), (B3, A4)), ((B1, A1), (B4, A4)), ((B1, A1), (B3, A2)),

((B2, A1), (B4, A2)), ((B1, A2), (B2, A4)), ((B1, A1), (B2, A3)), ((B1, A1), (B3, A3)),

((B1, A1), (B3, A3))

are incompatible. These allow us to get more equations relating a1, . . . , a5:

a2, a3, (a1 − a2), (a1 − a3), (a4 + a5), (a4 − a5), (a1 − a2 − a3) ∈ T ;

(a1 − a4 − a5), (a2 − a3 − a4 − a5), (−a2 + a3 − a4 + a5) ∈ T ;

(a1 − a4 + a5), (a1 − a2 + a3 − a4 + a5), (a1 + a2 − a3 − a4 − a5) ∈ T.

To check that the solution set is, in fact, Q one can argue as follows. Since a4+a5 ∈ T
and a4 − a5 ∈ T we have either a4 = 0 or a5 = 0 (or both). Suppose a4 = 0 and
a5 �= 0. Then

a2, a3, a5, (a1 − a2), (a1 − a3), (a1 − a2 − a3) ∈ T ;

(a1 − a5), (a2 − a3 − a5) ∈ T ;

(a1 + a5), (a1 − a2 + a3 + a5), (a1 + a2 − a3 − a5) ∈ T.

Since a1 + a5 ∈ T and a1 − a5 ∈ T and a5 �= 0, we have a1 = 0. Then

a2, a3, a5, (a2 + a3), (a2 − a3 − a5) ∈ T.

This gives us solutions

(0,±1, 0, 0,∓1), (0,±1,∓1, 0,±1), (0, 0,±1, 0,∓1).

The cases when a4 �= 0, a5 = 0, and a4 = a5 = 0 are considered similarly. In all cases
we have a ∈ Q.

Corollary 7.2. Let v be the same as in Fact 7.1. Then v ∈ T [18] if and only if
v belongs to Ω ∪ −Ω.

Proof. We only need to show that if v ∈ T [18], then v ∈ Ω ∪ −Ω. By Fact 7.1
v ∈ T [18] implies a ∈ Q. Notice that for the first six elements of Q vector v belongs
to Ω ∪ −Ω. Consider the next four elements of Q. For these elements we use the
following strategy: write all χ(X,Y ) in v as χ(X) − χ(Y ), simplify the expression,
and return to the form χ(X,Y ). In fact, for all eight vectors we will end up with
χ(X,Y ) ∈ Ω ∪−Ω. For example, if a = (1, 0, 0, 1, 0), then

v = χ(Bs, Ai)+χ(Ai, Al) = χ(Bs)−χ(Ai)+χ(Ai)−χ(Al) = χ(Bs)−χ(Al) = χ(Bs, Al).

D
ow

nl
oa

de
d 

10
/1

3/
14

 to
 1

29
.5

9.
11

0.
10

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIMPLICIAL COMPLEXES AND PROBABILITY ORDERS 1841

Consider the remaining three elements of Q. To deal with these elements we need
an additional equation. By the construction the sequence (A1, . . . , A4;B1, . . . , B4) is
a trading transform. So for every {i1, . . . , i4} = {j1, . . . , j4} = [4] the equation

(7.1) χ(Bi1 , Aj1) + χ(Bi2 , Aj2) + χ(Bi3 , Aj3) + χ(Bi4 , Aj4 ) = 0

holds. Now we use the following strategy: first, by (7.1) write −χ(Bi4 , Aj4) instead
of χ(Bi1 , Aj1) + χ(Bi2 , Aj2) + χ(Bi3 , Aj3); second, write all χ(X,Y ) as χ(X)− χ(Y )
and simplify the expression; third, return to the form χ(X,Y ). For all six vectors
a ∈ {(±1,±1,±1, 0, 0), (±1,±1,±1,±1, 0), (±2,±1,±1,±1, 0)}we, yet again, will end
up with χ(X,Y ) ∈ Ω ∪−Ω. For example, if a = (2, 1, 1, 1, 0), then

v = 2χ(Bs, Ai) + χ(Bt, Aj) + χ(Bu, Ak) + χ(Ai, Al)

= χ(Bs, Ai) + (χ(Bs, Ai) + χ(Bt, Aj) + χ(Bu, Ak)) + χ(Ai, Al)

= χ(Bs, Ai)− χ(Bv, Al) + χ(Ai, Al) = χ(Bs)− χ(Ai)− χ(Bv)

+χ(Al) + χ(Ai)− χ(Al) = χ(Bs)− χ(Bv) = χ(Bs, Bv).

This completes the proof.
Corollary 7.3. Let b ∈ Z6. Then

b ∗ (χ(B1, A4), χ(B2, A1), χ(B3, A2), χ(A2, A1), χ(A3, A1), χ(A4, A1)) = 0

if and only if b = 0.
Proof. It is sufficient to show that there does not exist a nonzero vector b ∈ Z6

such that

(−b5 − b6)χ(A4, A1) = b′ ∗ x
= (b1, . . . , b5)

T ∗ (χ(B1, A4), χ(B2, A1), χ(B3, A2), χ(A2, A1), χ(A3, A4)).

Suppose b5 + b6 = 0. Then, by Fact 7.1, we have b′ ∗ x = 0 if and only if b′ = 0.
On the other hand, if b5 + b6 �= 0, then, without loss of generality, we can assume

b5 + b6 = 1. Whence, b′ ∗ x should be a vector in T [18]. By Fact 7.1, the vector
b′ ∗ x ∈ T [18] if b′ ∈ Q. By construction χ(A1, A4) �= χ(X,Y ) for every X,Y ∈
{A1, . . . , A4, B1, . . . , B4} such that (X,Y ) �= (A1, A4). One can show that b′ ∗ x �=
χ(A1, A4) for every b′ ∈ Q.

Fact 7.4. Let a = (a1, . . . , a8) be a vector in Z8 whose every coordinate ai has
the absolute value of at most 100. Then a ·w+ = 0 if and only if a = 0.

Proof. We calculate the dot product a ·w+ substituting the values of w19, . . . , w26

from (5.5):

0 = a ·w+ = N
∑
i∈[4]

ai −K

⎛
⎝∑

i∈[4]

ai −
∑
i∈[4]

a4+i

⎞
⎠(7.2)

−
[
χ(B1, A4)

(
7∑

i=5

ai −
3∑

i=1

ai

)
+ χ(B2, A1)

(
7∑

i=6

ai −
3∑

i=2

ai

)

+χ(B3, A2)(−a3 + a7) +
∑
i∈[4]

aiχ(Ai)

]
·w.

The number N is much larger than K, and K is much larger than
∑

i∈[18] wi. As

|ai| ≤ 100, the three summands cannot cancel each other. Therefore,
∑

i∈[4] ai = 0 and
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∑
i∈[4] a4+i = 0. Since the coordinates of w are linearly independent, the expression

in the square brackets should be zero.
We know that a1 = −a2−a3−a4, so the expression in the square brackets in (7.2)

can be rewritten in the following form:

b1χ(B1, A4) + b2χ(B2, A1) + b3χ(B3, A2)(7.3)

+ a2χ(A2, A1) + a3χ(A3, A1) + a4χ(A4, A1),

where b1 =
∑7

i=5 ai −
∑3

i=1 ai, b2 =
∑7

i=6 ai −
∑3

i=2 ai, and b3 = a7 − a3.
By Corollary 7.3, the expression (7.3) is zero if and only if b1 = 0, b2 = 0, b3 = 0,

and a2 = 0, a3 = 0, a4 = 0, and this happens if and only if a = 0.
Proof of Claim 5.6. Assume, to the contrary, that χ(C1, D1) ∈ Ω ∪ −Ω and

χ(C,D) does not belong to Ω′ ∪ −Ω′. Consider χ(C†
1 , D

†
1) ∈ Ω′ ∪ −Ω′. Sets C and

D have equal weights. One can see that the weights of C†
1 and D†

1 are also equal.
Equivalently,

χ(C1, D1) ·w + χ(C2, D2) ·w+ = 0,

χ(C1, D1) ·w + χ(C†
1 \ C1, D

†
1 \D1) ·w+ = 0.

Adding the two equations, we get

(χ(C†
1 \ C1, D

†
1 \D1)− χ(C2, D2)) ·w+ = 0.

Due to Fact 7.4, this is possible if and only if χ(C†
1 \ C1, D

†
1 \D1) − χ(C2, D2) = 0.

The latter is equivalent to χ(C,D) = χ(C†
1 , D

†
1) ∈ Ω′ ∪ −Ω′, a contradiction.

Proof of Claim 5.7. We remind the reader that α was defined in (5.7). Sets C
and D have the same weights and we established that

χ(C2, D2) ·w+ = α ·w.

Without loss of generality we can assume that C2 ∩D2 is empty. Similarly to the
argument in the proof of Fact 7.4, the vector α can be expressed as

(7.4) α = a1χ(B1, A4) + a2χ(B2, A1) + a3χ(B3, A2) +
∑
i∈[4]

biχ(Ai)

for some ai, bj ∈ Z. If we look at the representation of the last eight weights in (5.5), we
note that the first four weights are much larger than the last four. We call the weights
w19, . . . , w22 “super-heavy” and weights w23, . . . , w26 “heavy”. Since w(C) = w(D),
if there are k ≤ 4 atoms with super-heavy (or heavy) weights in C, then there are
exactly k atoms with super-heavy (or heavy, respectively) weights in D and visa versa.
The characteristic vectors χ(A1), . . . , χ(A4) participate in the representations of the
super-heavy atoms only. Thus if 18+ i ∈ C2, then there is j �= i such that 18+j ∈ D2,
where i, j ∈ [4]. Hence

b18+iχ(Ai) + b18+jχ(Aj) = χ(Ai, Aj).

Therefore, (7.4) can be rewritten as follows:

(7.5) α = a1χ(B1, A4) + a2χ(B2, A1) + a3χ(B3, A2) + a4χ(Ai, Aj) + a5χ(Ak, Al),

where a1, a2, a3 ∈ Z; a4, a5 ∈ {0, 1}; and {i, j, k, l} = [4].
One can notice that v from Corollary 7.2 is the general form of α. Hence α ∈ T 18

if and only if α ∈ Ω ∪ −Ω, which is Claim 5.7.
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