2020

ICO vs. IPO: Empirical Findings, Information Asymmetry, and the Appropriate Regulatory Framework

Moran Ofir
Ido Sadeh

Follow this and additional works at: https://scholarship.law.vanderbilt.edu/vjtl

Part of the Banking and Finance Law Commons

Recommended Citation
Available at: https://scholarship.law.vanderbilt.edu/vjtl/vol53/iss2/3

This Article is brought to you for free and open access by Scholarship@Vanderbilt Law. It has been accepted for inclusion in Vanderbilt Journal of Transnational Law by an authorized editor of Scholarship@Vanderbilt Law. For more information, please contact mark.j.williams@vanderbilt.edu.
ICO vs. IPO: Empirical Findings, Information Asymmetry, and the Appropriate Regulatory Framework

Moran Ofir* and Ido Sadeh*

ABSTRACT

Initial coin offerings (ICOs) are a new form of fundraising whereby blockchain-related ventures raise public capital in exchange for newly issued digital tokens. In recent years, ICOs have been a prominent focus of legal and economic studies, which analyze their characteristics and determinants of their success. In this Article, we systematically review these studies and identify key ICO success factors. We then offer theoretical explanations for our findings, and in certain cases, connect the empirical results with the IPO and crowdfunding literatures. The results of our analysis are important for two reasons. First, there is no single formal data source, and there is evidence of inconsistencies across the different data sources available. Second, our results show in what circumstances ICO investors and initiators behave like IPO investors and initiators, and hence contribute to the literature on tokens as securities. In the second part of this Article, based on our analysis, we show that a high degree of information asymmetry exists in ICOs, identify three sources of informational asymmetries, and discuss the role of signaling theory and rating websites in mitigating these asymmetries. Finally, we discuss the regulatory implications of our findings, and propose specific disclosure requirements tailored to ICOs.

Keywords: Initial Coin Offerings (ICO), Initial Public Offering (IPO), Cryptocurrency, Digital Tokens, Securities Regulation
JEL Classification: K22, G14, G18, G23, G28

* Assistant Professor, Harry Radzyner School of Law, Interdisciplinary Center (IDC), Herzliya; corresponding author: mofir@idc.ac.il
* Student, Harry Radzyner School of Law, Interdisciplinary Center (IDC), Herzliya.

525
Table of Contents

I. **Introduction** .. 527

II. **An Overview of the Foundations of Blockchain and ICOs**............................... 532
 A. **Blockchain** ... 532
 B. **Smart Contracts** .. 535
 C. **Cryptocurrencies, Coins, Digital Currencies, and Tokens**......................... 537
 1. What are Cryptocurrencies? 537
 2. A Technical Classification of Cryptocurrencies—Coins and Tokens 539
 3. A Functional Classification of Cryptocurrencies—Digital Currencies and Digital Tokens ... 540
 4. Different Types of Tokens 541
 D. **Initial Coin Offering (ICO)** ... 544
 1. What Are ICOs?........................... 544
 2. What Are the Benefits of ICOs? ... 544
 3. How Do ICOs Work? 547
 4. How is an ICO Different from an IPO? ... 551

III. **ICO Characteristics—Review and Analysis of the Empirical Literature** 553
 A. **A General Overview** .. 553
 1. Fundraising Success Rate 554
 2. Gross proceeds 555
 3. The Geography of ICOs 555
 B. **Pre-ICO Practices** .. 557
 2. Source Code Disclosure 562
 3. Social Media and Marketing 564
 4. Presale ... 566
 C. **Token Sale Design Choices** ... 568
 1. Blockchain and Token Types ... 568
 2. Economic Variables 569
 D. **Token Sale Duration** .. 576
 E. **Post-ICO** ... 577
 1. Listing ... 577
 2. Underpricing 578

IV. **Information Asymmetry** ... 579
 A. **Reducing Information Asymmetry through Signaling—Are Investors Able to Distinguish Between High- and Low-Quality Firms?** ... 581
I. INTRODUCTION

Initial coin offerings (ICOs) are a new form of fundraising whereby blockchain-related ventures raise public capital in exchange for newly issued digital tokens. The issued tokens may represent a variety of rights, ranging from financial rights, such as dividend and voting rights, to consumptive rights, such as the right to access a service or a product that the issuer will provide. After the fundraising ends, the issued tokens are generally traded on the secondary market.

ICOs have quickly emerged as a popular fundraising method. While the idea of an ICO was first applied in 2013,1 by 2017, over $10 billion was raised by over one thousand firms,2 and by October 2018, over $21 billion was raised by over three thousand firms.3 This rapid growth can be explained by various factors. From investors’ perspectives, cryptocurrencies are perceived as a “hedge against volatile local currencies and geopolitical risk,” and their growth might be related to a continuing distrust in the traditional banking sector since the 2008 financial crises.4 Additionally, growing media

attention, combined with astronomic returns for early investors—with returns on investment (ROIs) exceeding fifty thousand percent—have attracted investor interest. From ventures’ perspectives, an ICO is an attractive alternative source of funding, because it may reduce transaction costs compared to traditional financing methods, it has a global outreach, and it enables ventures to establish a customer base during the fundraising.

Despite their rapid growth, many aspects of ICOs remain unclear. First, the terminology around the ICO phenomenon is yet unsettled and different scholars and regulators tend to use different terms for identical concepts. Second, very few studies analyze the valuation of ICOs, which therefore remains unclear. Third, tokens vary dramatically in their nature. They may represent a wide range of rights, from financial rights to consumptive rights, and hence their regulatory status is unclear. Complicating matters further, various jurisdictions have adopted a range of approaches, from banning ICOs to a crypto-friendly approach. Against that background, empirical and theoretical studies have analyzed various issues related to ICOs, trying to reduce the uncertainty associated with the market. This Article contributes to the growing literature on ICOs by providing thorough analysis of two specific key areas: determinants of ICO success and information asymmetry.

Determinants of ICO success. Since its boom in 2017, the ICO phenomenon has attracted legal and economic empirical studies, which have analyzed determinants of ICO success. Their findings have often been inconsistent, however. One possible reason is that there are no official data sources, and there is evidence of inconsistencies across

5. See id. at 75 (introducing media attention as one of the factors driving unprecedented growth in the cryptocurrencies market during 2017).

6. See Coin and Crypto, Early Investors are Making 50,000% Returns on ICOs, HACKER NOON (Dec. 3, 2017), hackernoon.com/investors-are-making-50-000-returns-on-icos-32432bc741d1 [https://perma.cc/E68G-CXBB] (archived Nov. 10, 2019) (introducing the concept of ICO and its return on investment trends); Top 10 ICOs with the Biggest ROI, COINTELEGRAPH, cointelegraph.com/ico-101/top-10-icos-with-the-biggest-roi#10-qtum--9225-roi (last visited Nov. 8, 2019) [https://perma.cc/PPU6-AE6V] (archived Nov. 10, 2019) (explaining that 2017 was a very profitable year for ICOs and introducing the most successful ICO campaigns at the time of publication).

7. See Saman Adhami, Giancarlo Giudici & Stefano Martinazzi, Why Do Businesses Go Crypto? An Empirical Analysis of Initial Coin Offerings, 100 J. ECON. & BUS. 64, 65 (2018) (setting forth the reasons why the increasing success of ICOs is relevant to business activity); Jiri Chod & Evgeny Lyandres, A Theory of ICOs: Diversification, Agency, and Information Asymmetry 3 (July 18, 2018) (unpublished manuscript) (on file with author), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3159528 [https://perma.cc/ZV8V-TQTY] (archived Nov. 10, 2019) (arguing that ICOs are the preferred source of financing for under-diversified venture capital investors when the venture payoff is highly uncertain, because ICO financing increases the entrepreneurs’ options to retain cash and increase the required return).

8. See infra Part III.
various data sources. To address this, the Article provides an overview of the empirical literature. It aggregates empirical studies using different data sources and methodologies to identify factors that affect ICO success. Subsequently, it compares the results with empirical studies in the context of initial public offerings (IPOs) and crowdfunding, and then offers theoretical explanations for the findings.

The results in this part are important for two reasons. First, by combining empirical results from a large number of empirical studies, using different data sources and methodologies, this Article provides a comprehensive and accurate meta-analysis of factors that affect ICOs. This analysis is especially important given the absence of a formal data source. Second, this Article compares determinants of ICO success with determinants of IPO success, and thus shows in what circumstances ICO investors and initiators behave like IPO investors and initiators. As such, it contributes to the literature that discusses the classification of tokens as securities.

Information asymmetry. The second part of the analysis focuses on information asymmetry. Information asymmetry is one of the most important sources of market friction. It is a condition associated with financial markets, wherein potential investors lack information required to assess the true quality of the financial product. Potentially, this may create a market for lemons, where high-quality

10. For a similar approach, see generally Lyandres et al., supra note 9, at 7–30 (comparing ICOs data to typical securities’ outcomes to determine whether ICOs should be deemed a type of securities for regulatory purposes).

companies will be deterred from entering the market. Following a growing body of literature in the context of IPOs, venture capitalists (VC), and crowdfunding, recent empirical studies document significant evidence for information asymmetry and poor disclosure in the ICO realm.

Against that background, this Article outlines three sources of informational asymmetries—the absence of standard disclosure requirements, investors' lack of fundamental technical knowledge, and projects' early stages of development during the offering—and discusses the role of signaling theory and rating websites in mitigating these asymmetries.

Signaling Theory examines how high-quality ventures can distinguish themselves from low-quality firms by sending signals about the venture's true quality. Given the severe information asymmetry associated with the market, coupled with the high variation in ICOs' quality, the Article argues that high-quality ICOs are incentivized to send signals about the true quality of ventures, and examines whether they can signal quality through voluntary disclosure and technological capabilities. The analysis presented in this Article suggests that the effect of providing more extensive information in white papers is unclear, which implies that the effectiveness of signaling in mitigating informational asymmetries in the ICO context is limited.

Rating websites study ICOs and make recommendations on their tokens. Considering the information asymmetry associated with the

15. See, e.g., Gerrit K.C. Ahlers, Douglas Cumming, Christina Günter & Denis Schweizer, Signaling in Equity Crowdfunding, 39 ENTREPRENEURSHIP THEORY & PRAC. 955, 959 (2015) (discussing how information asymmetry between investors and entrepreneurs in the crowdfunding context may result in a lack of funding for high-performing ventures).

16. These sources were initially identified by Christian Fisch. See Christian Fisch, Initial Coin Offerings (ICOs) to Finance New Ventures, 34 J. BUS. VENTURING 1, 6 (2019); see also Moral Hazard, supra note 11, at 6–7 (exploring the sources of information asymmetry in the context of token sales).

17. See Brian L. Connelly, S. Trevis Certo, R. Duane Ireland & Christopher R. Reutzel, Signaling Theory: A Review and Assessment, 37 J. MGMT. 39, 40 (2011) (providing examples of the use of the signaling theory across different spectrums, including, for example, recruiting or corporate governance).
market, the Article argues that these websites play a vital intermediary role. The absence of traditional underwriters—who play a critical intermediary role in the IPO market\(^\text{18}\)—coupled with the complexity of this new technology, increase the demand for information. Analysts may screen ICOs' information disclosure and signaling and make it more accessible to unsophisticated investors, for whom conducting due diligence on each ICO might be too costly. However, the Article demonstrates major drawbacks with regard to their ratings, such as inconsistency, inaccuracy, and lack of reference to the source code—which is the *de facto* business model of the project. Therefore, the Article argues that the effectiveness of analyst rating in mitigating the information asymmetry associated with the market is limited as well.

These findings suggest that ICO investors are not entirely rational, and hence that we cannot fully rely on the competitive forces of an economy in this case. Therefore, the Article argues that regulators should address the sources of informational asymmetries discussed in this Article—which are a source of investors' irrationality—by mandatory disclosure provisions. To this end, based on the empirical analysis, this Article proposes specific disclosure requirements tailored to the unique characteristics of ICOs. By doing so, this Article contributes to the discussion on optimal ICO regulation.

The remainder of this Article is organized as follows. Part II provides a comprehensive overview of the foundations of blockchain and ICOs. Part III provides an analysis of the empirical literature related to ICO characteristics. The first subpart presents a brief overview of the market, and the subsequent subparts analyze the association between ICO characteristics and success. Part IV focuses on information asymmetry; it discusses three sources of informational asymmetries and examines the role of signaling theory and rating websites in mitigating these asymmetries. Part V discusses the regulatory implications of the findings of this study and proposes specific disclosure requirements tailored to ICOs.

II. AN OVERVIEW OF THE FOUNDATIONS OF BLOCKCHAIN AND ICOs

The terminology around blockchain technology is yet unsettled and hence often confusing. Different scholars and regulators tend to use different terms for identical concepts. To avoid inconsistency, as a preliminary matter, the Article provides a general overview of the fundamental terms associated with the blockchain phenomenon. The technical aspects of blockchain and cryptocurrencies will not be discussed in greater detail in the Article, since they are not necessary to understand the main arguments developed in the Article.

A. Blockchain

Blockchain is a decentralized database hosted by a network of computers (called nodes) that communicate with each other via the internet. It is generally used to track and record the ownership information about any asset to which a unique identifier can be assigned.

20. See FIN. CONDUCT AUTH., DISCUSSION PAPER DP17/3: DISCUSSION PAPER ON DISTRIBUTED LEDGER TECHNOLOGY 10 (Apr. 2017), www.fca.org.uk/publication/discussion/dp17-03.pdf (archived Nov. 10, 2019) (defining nodes as “participants on a distributed ledger. Different nodes may have different rights to read, write and/or delete data.”).

The asset itself can be either digital or physical. For example, a unique cryptocurrency (identifier) that represents a physical car can be issued on top of the blockchain, enabling independent parties to track and transfer their ownership.

The blockchain itself is designed as a peer-to-peer network that is neither maintained by a central entity nor located at a specific physical location. Instead, a copy of the database is stored on every computer in the network and all copies are updated simultaneously after any addition to the database. To ensure that all copies are updated identically, the system relies on inherent incentives that shape the nodes' behavior.

The process of adding new data to the shared database is governed by a predefined protocol (known as a consensus mechanism) which defines “(1) how information is added to a blockchain; and (2) how disparate members of a blockchain-based network come to periodic agreement about the current state of the shared database.” This protocol allows anyone to add to the shared database, and at the same time, ensures that the newly added information is valid.

Regarding its structure, the blockchain is comprised of blocks which contain, inter alia, a data record (for example, a set of transactions), and each block contains a reference to the previous one: Together, the blocks form a chain that consists of all the transactions

22. See Mattila, supra note 19, at 10 (explaining blockchain technology capabilities, and in particular, the ability to create records of ownership).

23. See id. (emphasizing blockchain technology’s ability to create records of ownership regarding both digital and physical assets).

25. See Iansiti & Lakhani, supra note 24 (explaining how blockchain functions); Wright & De Filippi, supra note 21, at 6–7 (describing blockchain as “a chronological database of transactions recorded by a network of computers. . . [and] stored on every computer in the network . . . which periodically synchronize to . . . have the same shared database.”).

26. See Shaanan Cohney, David Hoffman, Jeremy Sklaroff & David Wishnick, Coin-Operated Capitalism, 119 COLUM. L. REV. 591, 602 (2019) (clarifying that blockchain technology does not need to rely on the trustworthiness of actors within the system because it relies “on economic incentives and code-based controls” modelling the network’s behavior).

28. See Mattila, supra note 19, at 10 (introducing the benefits of applying blockchain technology to financial instruments, asset registries, and marketplaces).
in a specific network. Once a new block is added to the chain (the shared database), it becomes "immutable and censorship-resistant." The links between the blocks make it (nearly) impossible to alter newly added data.

The blockchain can be designed as either permissioned/private or permissionless/public. Permissioned blockchains act as closed and private ecosystems, "where users are not freely able to join the network." Instead, predefined permissions are set to control who can access the database, execute the consensus mechanism, or maintain the database (store a copy of the database). Conversely, in permissionless blockchains, such as bitcoin, all users have equal rights: everyone can submit transactions, maintain the database, and participate in the validation process.

29. See Rohr & Wright, supra note 27, at 471 (discussing the concept of proof of work and its role in altering data within a blockchain-based mechanism).
30. Mattila, supra note 19, at 10.
32. Daniel Dob, Permissioned vs Permissionless Blockchains: Understanding the Differences, BLOCKONOMI (July 17, 2018), https://blockonomi.com/permissioned-vs-permissionless-blockchains/ [https://perma.cc/JKW9-H4QD] (archived Nov. 10, 2019). Permissioned/private blockchains can generally be classified into two categories: private and consortium blockchains. The distinction between the two lies primarily in the governance scheme; while in private blockchains one authority governs the whole system, in consortium blockchains the authority is shared among different parties. See Buterin, supra note 31 (enumerating the distinguishing features of each privacy setting); Hamida et al., supra note 31, at 93 ("[i]n private chains, one participant rules the whole system whereas members of consortium blockchains share the authority among them."). For the sake of simplicity, this Article assumes that the term permissioned/private blockchain encompasses both categories.
34. For a comparison between permissioned and permissionless blockchains, see Hamida et al., supra note 31, at 94 (highlighting differences in blockchain architecture between public and private blockchain, including differences in data structure, network and privacy, security and scalability, forks and responsiveness, and forks and updates); see also Zibin Zheng et al., An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends, in IEEE, INTERNATIONAL CONGRESS ON BIG DATA 557, 559–60 (2017) (comparing a number of items among the three categories of blockchain-like database applications); Praveen Jayachandran, The Difference Between Public and Private Blockchain, IBM THINK BLOG (May 31, 2017), www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/ [https://perma.cc/7SPY-S2JB] (archived Nov. 10, 2019) (addressing
B. Smart Contracts

A smart contract is a self-execution agreement written in a computer code that can be utilized on blockchain technology.35 The smart contract concept was first proposed by Nick Szabo in 1997,36 years before the invention of the blockchain.37 Szabo envisioned that many kinds of contractual agreements can be embedded into software codes and performed automatically, without human intervention.38 His primary example was the vending machine:

\[\text{A vending machine performs two critical functions. First, it directly effectuates performance by taking in money and . . . [dispensing] products. Second, it incorporates enough security to make the cost of breach (breaking into the machine) exceed the potential rewards. For all practical purposes, the vending machine is the entire contractual environment for its transactions.}39\]

Szabo's ideas were ahead of their time and remained isolated from the e-commerce world for years.40 That, however, has changed with the development of the blockchain. The blockchain allowed independent parties to "confirm that an event or condition has in fact occurred
without the need for a third party."41 and thus it enabled the creation of enforceable smart contracts.42 It allowed independent parties "to coordinate their actions and trust that their commitments to each other will be fulfilled."43 This development gave rise to new uses of smart contracts44 and attracted significant attention from both academic and industrial researchers.

Another important development in the evolution of smart contracts is the creation of the Ethereum platform. Ethereum is a decentralized blockchain founded in 2014 with the goal of "allowing anyone to write smart contracts and decentralized applications where they can create their own arbitrary rules for ownership, transaction formats and state transition functions."45 To this end, Ethereum has developed a programming language that enabled the creation of sophisticated smart contracts.46 Using Ethereum's programming language, ventures could create their own digital tokens—which can be assigned with various rights (e.g., economic, voting, and consumptive rights)—and offer them to the public through an ICO

\begin{itemize}
 \item[41.] Wright & De Filippi, \textit{supra} note 21, at 10.
 \item[42.] See Werbach & Cornell, \textit{supra} note 35, at 33 (describing how Bitcoin works as a guarantee mechanism, completing Szabo's conception of smart contracts as a security device).
 \item[43.] Id.
 \item[44.] For example, smart contracts have been created to automatically execute financial derivatives. See Wright & De Filippi, \textit{supra} note 21, at 11 & n.51 ("smart contracts have mostly been created to automatically execute derivatives, futures, swaps, and options."); see also Jesus Rodriguez, \textit{The Programmable Short: Four Crypto Derivative Protocols You Should Know About}, HACKER NOON (Oct. 14, 2019), https://hackernoon.com/the-programmable-short-four-crypto-derivative-protocols-you-should-know-about-b0b4ecad9e95 [https://perma.cc/3XJR-C8KC] (archived Nov. 10, 2019) (discussing the use of smart contracts in programmable derivatives). Smart contracts have also been created to facilitate the sale of goods and services between independent parties on the Internet without the need for a centralized middleman. See \textit{How does OpenBazaar work?}, OPEN BAZZAR, https://openbazaar.zendesk.com/hc/en-us/articles/207982443-How-does-OpenBazaar-work (last visited Nov. 9, 2019) [https://perma.cc/S6P4-QXY9] (archived Nov 10, 2019) (explaining the use of online commerce software designed to avoid the middleman); Wright & De Filippi, \textit{supra} note 21, at 11 (highlighting the versatility of smart contracts). Finally, smart contracts allow musicians to automatically collect royalties on their songs each time they are downloaded. See generally \textit{Frequently Asked Questions}, UJO MUSIC, https://ujomusic.com/faq (last visited Nov. 9, 2019) [https://perma.cc/ZT4B-CBS4] (archived Nov. 10, 2019).
 \item[46.] See Wright & De Filippi, \textit{supra} note 21, at 12 (describing a number of open source projects that have contributed to the evolution of smart contracts).
\end{itemize}
(through the use of smart contrasts), thus bypassing traditional VCs and the process of an IPO.47

C. Cryptocurrencies, Coins, Digital Currencies, and Tokens

The vocabulary used to describe the different currencies associated with the blockchain is confusing. There are “virtual currencies,” “digital currencies,” “crypto-coins,” “crypto-assets,” “tokens,” etc.48 This subpart explains what cryptocurrencies are and provides an overview of different types of cryptocurrencies and tokens.

1. What are Cryptocurrencies?

Cryptocurrency is basically a digital representation of value that can be transmitted through the network that hosts it. Merriam-Webster defines cryptocurrency as “any form of currency that only exists digitally, that usually has no central issuing or regulating authority but instead uses a decentralized system to record transactions and manage the issuance of new units, and that relies on cryptography to prevent counterfeiting and fraudulent transactions.”49 Cryptocurrencies typically function as a medium of exchange by certain parties on a certain network, and their value is normally determined by market supply and demand.

The main differences between a cryptocurrency and a fiat currency are as follows. First, unlike fiat currencies that can be printed by central banks, cryptocurrencies are created in accordance with a predefined computer protocol.50 Second, cryptocurrencies typically run on a decentralized network, which means that there is no central authority that governs it.51 No central authority can manipulate the supply of Bitcoins, for example. Third, in contrast to fiat currencies—

47. See Robinson II, supra note 21, at 920 (discussing the ability of developers to create new investment by issuing their own crypto-tokens); Rohr & Wright, supra note 27, at 474 (introducing the concept of application tokens).
48. BLANDIN ET AL., supra note 19; Walch, supra note 19, at 721.
51. See Dong He et al., Virtual Currencies and Beyond: Initial Considerations 9, SND/16/03 (Jan. 2016), https://www.jdcoin.us/images/sdn1603.pdf [https://perma.cc/LR8Z-FC2H] (archived Nov. 10, 2019) (describing virtual currency's cryptography techniques, which include a decentralized administration framework).
whose value is backed by the creditworthiness of central banks and governments—the value of cryptocurrencies typically derive "solely from the expectation that others would also value and use them."\(^5\)

Fourth, the records of cryptocurrency ownership on top of the blockchain are encrypted (hence their name).\(^5\)

Cryptocurrencies are also different from money, which traditionally serves as a medium of exchange, a unit of account, and a store of value.\(^5\) While cryptocurrencies like Bitcoin and Ether act as a medium of exchange between certain parties, their fluctuating demand and inflexible supply impede their ability to serve as an adequate store of value.\(^5\) Additionally, it is arguable that most cryptocurrencies cannot serve as a unit of account, because they "do not measure the value of goods and services directly; they represent the value of goods and services measured in fiat currency based on an exchange rate."\(^5\)

Furthermore, since a cryptocurrency does not represent a monetary claim against a legal entity, it is also different from electronic money, defined in the E-Money Directive, Art. 2(2) as "electronically, including magnetically, stored monetary value as represented by a claim on the issuer which is issued on receipt of funds for the purpose of making payment transactions."\(^5\)

5. See id. at 17 (studying, inter alia, whether cryptocurrencies fulfill the economic roles associated with money and concluding that they currently do not); see also David Yermack, Is Bitcoin a Real Currency? An Economic Appraisal 1, 4 (Nat'l Bureau of Econ. Res., Working Paper No. 19747, 2013), https://www.nber.org/papers/w19747.pdf [https://perma.cc/L3DH-CV8T] (archived Nov. 10, 2019) (examining whether bitcoin performs the functions of money and concluding that it "behave[s] more like a speculative investment than a currency"). See generally Saifedean Ammous, Can Cryptocurrencies Fulfil the Functions of Money?, 70 Q. Rev. Econ. & Fin. 38 (2018) (analyzing the monetary characteristics of five cryptocurrencies to assess whether they can fulfil the functions of money).

5. See Iris M. Barsan, Legal Challenges of Initial Coin Offerings (ICO), 3 Rev. Trimestrielle de Droit Fin. 54, 57 (2017) (arguing that the "high price volatility" of cryptocurrencies hinders their ability to serve as a store of value); Ammous, supra note 54, at 50 (concluding that fluctuating demand and inflexible supply make cryptocurrency an inadequate unit of account); He et al., supra note 51, at 17 (discussing high price volatility of virtual currencies); Yermack, supra note 54, at 13–18 (comparing Bitcoin's performance as a store of value to the performance of other currencies and concluding that its excessive volatility is more consistent with a speculative investment than a currency).

56. Barsan, supra note 55, at 57; see also He et al., supra note 51, at 17 (discounting the ability of virtual currency to currently operate as an independent unit of account).

2. A Technical Classification of Cryptocurrencies—Coins and Tokens

From a technical perspective, cryptocurrencies can be divided into coins and tokens (or, alternatively, protocol tokens and app tokens). The difference between the two is that coins run on an independent blockchain, whereas tokens are built on an existing blockchain. In the former, the underlying blockchain platform is primarily designed to create and transfer the coin, and the coin is generally being used "to compensate parties for participation in some activity that contributes to the maintenance of the blockchain and its network." Examples are Bitcoin—which was designed to act as a "purely peer-to-peer version of electronic cash [that] would allow online payments to be sent directly from one party to another without going through a financial institution"—and Ether.

Unlike coins—which run on an independent blockchain—tokens reside on top of another blockchain, most prominently on the Ethereum blockchain. Tokens tend to have more specific objectives compared to coins, and they are typically intended to be used solely on their platforms. Coins, on the other hand, often can be used as a means of payment for goods or services outside the platform. For example, in the Ethereum ICO, investors offered bitcoin and received Ether in return.

Understanding the nature of the Ethereum platform may help to understand the differences between coins and tokens. Ethereum is a decentralized blockchain founded in 2014. Unlike Bitcoin, which was designed to provide a platform for cryptocurrencies exchange, the Ethereum platform was created with the goal of "allowing anyone to write smart contracts and decentralized applications where they can create their own arbitrary rules for ownership, transaction formats and state transition functions." Using smart contracts, any entrepreneur—including unexperienced software developers—can

58. See Rohr & Wright, supra note 27, at 470–85 (discussing the characteristics of protocol and app tokens).
59. Id. at 470.
60. Nakamoto, supra note 33, at 1.
61. See infra Part III.C.1.
62. See Rohr & Wright, supra note 27, at 475 (comparing protocol tokens to app tokens, and declaring the latter as more specific and narrow).
63. See Hacker & Thomale, supra note 57 (explaining that tokens can be used to pay for items that are outside the platform).
64. See id. (discussing currency tokens).
65. For an overview of the Ethereum platform, see Robinson II, supra note 21, at 919–24.
create on top of the Ethereum blockchain a new token that can be assigned financial, voting, participation, and consumptive rights.67

To facilitate the process of creating new tokens on top of the Ethereum blockchain, Ethereum has created the ERC20, a "token standard [that] describes the functions and events that an Ethereum token contract has to implement."68 The ERC20 simplifies the process of issuing a new token, enabling anyone to issue a new token using less than one hundred lines of code.69 Additionally, it ensures the interoperability of different tokens; tokens issued under this protocol can interact with smart contracts on the Ethereum platform and with every wallet that supports Ethereum-based tokens.70

Back to coins and tokens: Ether acts as the "main internal crypto-fuel of Ethereum, and is used to pay transaction fees."71 Any operation of smart contracts on top of the Ethereum blockchain requires a per-function fee (called "gas") that must be paid using Ether.72 As such, Ether is a coin (or a protocol token). It runs on a native blockchain platform, it is used to fuel the platform, and it can be used as a means of payment for goods or services outside the platform (for example, in an ICO investors can buy new app tokens with Ether). The cryptocurrencies that build on top of the Ethereum platform, on the other hand, are tokens (or app tokens).

3. A Functional Classification of Cryptocurrencies—Digital Currencies and Digital Tokens

Alternatively, cryptocurrencies can be divided into digital currencies73 and digital tokens based on the function they serve. This

67 See Rohr & Wright, supra note 277, at 474 & n.54 (explaining that smart contracts are a simple tool for software developers to create secure tokens with attached rights).

69 See Rohr & Wright, supra note 27, at 474 (describing the "ERC20 token standard").

70 See Robinson II, supra note 21, at 958 & n.349 (declaring that most ICOs within Ethereum use the ERC20 standard and that specific safeguards could be included in the protocol, operating across the board of ICOs).

71 Buterin, Ethereum Paper, supra note 45, at 13.

72 See id. at 14 (describing "GASPRICE" as a fee that is paid per every computation step of code execution); see also Cohney et al., supra note 26, at 603 (explaining the operation of Ethereum as opposed to Bitcoin, and in particular its payment of a "per-function fee").

73 Different regulators often use the terms "Digital Currency" and "Virtual Currency" interchangeably. To avoid inconsistency, in this Article, we will use the term "Digital Currency."
classification has been adopted by most regulators around the world,74 and accordingly we have decided to use this classification in the Article.

In this classification, a digital token can be defined as "any digital representation of an interest, which may be of value, a right to receive a benefit or perform specified functions or may not have a specified purpose or use."75 And, on the other hand, a digital currency can be defined as "a type of . . . [cryptocurrency] that is meant to be used as a means of payment or exchange for goods or services that are external to the . . . [blockchain] ecosystem on which they are built."76 Examples of digital currencies are Bitcoin and Ether. Both can be used by potential investors to purchase tokens during ICOs, and hence they are meant to function as a means of payment external to the platform.77

4. Different Types of Tokens

The previous subparts explained what cryptocurrencies are and what the differences between digital currencies and digital tokens are. Against this background, this subpart examines the differences between different types of tokens. While tokens may represent a wide range of rights, they generally can be divided into two major categories: security and utility tokens.78

\textit{Security tokens} is a broad category that consists of all tokens that grant their holders financial rights, such as dividends and voting rights;79 debt-like rights—paying interest on money and redeeming the...

74 For an overview, see generally BLANDIN ET AL., supra note 19 (performing a comparative analysis of the regulatory landscapes of cryptocurrency).

76 Id. at 43 (ESMA uses this definition for the term "Payment-type crypto-asset").

77 See supra note 73 and accompanying text.

78 For a similar classification, see Hacker & Thomale, supra note 57, n.48 (describing the traditional classification of tokens); see also Alexis Collomb et al., Blockchain Technology and Financial Regulation: A Risk-Based Approach to the Regulation of ICOs, 10 EUR. J. RISK REG. 263, 279–81 (2019) (suggesting that tokens can be divided into four groups: (1) utility tokens, which can be exchanged for goods or services; (2) participation tokens, which give rights to participate in the governance of a specific distributed process; (3) investment tokens, which give rights to financial returns, based on the profits generated by a project; and (4) asset-backed tokens, which give rights of ownership of an underlying asset).

79 Some sources refer to security tokens as investment tokens. See, e.g., Collomb et al., supra note 78, at 280–81; Rohr & Wright, supra note 27, at 476 ("investment tokens—are different from utility tokens and are not only functional in nature but provide holders with economic rights, such as a share of profits generated by a project or organization.")
debt after a certain period; and under certain circumstances, tokens that represent ownership of an underlying asset, or a right to participate in the cash flow generated by the underlying asset, for example, real estate. Another important characteristic of security tokens is liquidity on the secondary market—the fact that a token is traded on cryptocurrency exchanges with significant liquidity suggests that the token is transferable and negotiable and thus bears resemblance to securities.

Utility tokens, on the other hand, provide access to a service or a product the issuer will provide. Unlike digital currencies, which act as a means of payment that is external to the token platform, utility tokens grant rights to a certain platform where the service is provided. Unlike most securities tokens, utility tokens generally do not grant ownership rights. Utility tokens vary dramatically in their nature and may therefore be divided into three subcategories as follows (a token may, of course, comprise of elements from some or all these subcategories):

80. See Barsan, supra note 55, at 58 (discussing that tokens can incorporate “share-like features” such as paying interest); see also New Zealand Financial Market Authority (FMA)’s statement, according to which “a token linked to the value of a dollar or commodity could be a debt security if: investors can purchase a token with money; investors holding the token have the right to redeem that token for money; and an investor holding the token is not the beneficial owner of funds from which redemption proceeds are paid.” Kelly Buchanan, Regulatory Approaches to Cryptoassets: New Zealand, LIBRARY OF CONGRESS (Apr. 2019) (citing Fin. Mk. Auth. (N.Z.) Initial Coin Offers (Feb. 11, 2019). An example for this type of token would be Steem Blockchain Dollar. See Steem: An Incentivized, Blockchain-based, Public Content Platform, at 8 (Aug. 2017), steem.io/steem-whitepaper.pdf [https://perma.cc/L276-QGDU] (archived Nov. 10, 2019) (“Steem [Blockchain] Dollars are created by a mechanism similar to convertible notes. . . . In the start-up world, convertible notes are short-term debt instruments that can be converted to ownership at a rate determined in the future, typically during a future funding round. . . . The terms of the convertible note allow the holder to convert to the backing token with minimum notice at the fair market price of the token.”).

81. For example, the DGX token represents one gram of gold, and it can be managed and transferred on top of the Ethereum blockchain. See Anthony C. Eufemio, Kai C. Chng & Shaun Djie, Digix’s Whitepaper: The Gold Standard in Crypto-Assets, DIGIX (Jan. 2016), digix.global/whitepaper.pdf [https://perma.cc/DC7E-K7NJ] (archived Nov. 10, 2019).

83. See Hacker & Thomale, supra note 57 (linking liquidity of actively-traded tokens to negotiability).

84. For the definition proposed by Hacker & Thomale, see id. (arguing tokens provide utility “in the form of access to a product that the developers . . . are creating.”).
(1) **Usage Token:** A token that a user must hold in order to gain access to services a specific platform provides. An example is Ether: to use the Ethereum network—create or execute smart contracts—a user must pay fees that can be paid solely with Ether. Another example would be Filecoin, a “decentralized storage network that turns cloud storage into an algorithmic market.” This network runs on a blockchain and has a native token called FIL. To gain access to the decentralized storage network and store or distribute data, users must pay with FIL.

(2) **Work token:** A work token gives the right to contribute to a platform, and be compensated in exchange for this work, usually with a native token. An example is Augur's Reputation (REP) token. Augur is a trustless, decentralized oracle and platform for prediction markets. It allows anyone to create prediction markets in a decentralized manner. A prediction market can be created, for example, to determine whether Donald Trump will be elected president of the United States in 2020. After the election ends, Augur will come to consensus about whether Trump won with the help of REP token holders, who can stake their tokens to report on a market's possible outcome. If the report is “true” (i.e.,

85. *See* Zetzche et al., *supra* note 82, at 7 (defining usage tokens as those representing “a license to use a software program.”).
86. *See* Buterin, *Ethereum Paper, supra* note 45, at 20 (highlighting a feature of Ethereum that is lacking in bitcoin: ability to pay transaction fees directly in the currency); *Rohr & Wright, supra* note 27, at 473 (describing Ether “as a form of ‘crypto fuel’ necessary for the network to function”).
88. *See id.* (introducing the Filecoin system's properties).
91. For a short overview about Augur's token as a work token, *see* Howell et al., *supra* note 89, at 14–15.
93. *See id.* (claiming Augur seeks to reduce prediction markets’ risks and limitations by decentralizing them).
consistent with the consensus reached by the other token holders) the reporter will receive her REP tokens back, plus a portion of the settlement fees from the platform.94 If the report is not consistent with the consensus, then the reporter will be financially penalized.95 Therefore, REP is a work token; it gives users the right to contribute to the platform (report on a market’s outcome) and be compensated for it (if the report is accurate).

(3) Pure utility token: a utility token that is neither a usage nor a work token.

D. Initial Coin Offering (ICO)

The last subpart in this Part focuses on ICOs. It explains what ICOs are, what the benefits of ICOs are, how ICOs work, and how ICOs are different from IPOs. Understanding these features of ICOs is essential both for analyzing determinants of ICO success and for designing an optimal regulation regime.

1. What Are ICOs?

Though there is no one official and widely accepted definition for ICO (sometimes called “token sale” or “token generating event” (TGE)),96 it is basically a new form of fundraising wherein blockchain-related ventures raise public capital (in the form of either fiat currencies or cryptocurrencies) in exchange for newly issued digital tokens.97 After the initial offering, the tokens can generally be either exchanged among investors or converted into other cryptocurrencies (or fiat currencies) on the secondary market, in cryptocurrency exchanges.

94. See id. at 9–10 (claiming that true outcomes are rewarded with fifty percent more REP, making REP holders disputing false outcomes come ahead in their returns); Howell et al., supra note 89, at 15 (explaining how Augur’s REP returns work).

95. See Peterson et al., supra note 92, at 3 (introducing Augur’s reporting system).

96. In this Article, we use the term ICO because it is the most accepted one. However, it should be noted that this term might be misleading since most ICOs fix in advance the maximum token supply, and thus there is no subsequent offerings. See Moral Hazard, supra note 11, at 2 & n.1 (explaining the terms token sales and ICO are often used interchangeably).

97. For other definitions, see Adhami et al., supra note 7, at 64 (defining ICOs as “calls for funding promoted by organizations, companies, and entrepreneurs to raise money through cryptocurrencies, in exchange for a ‘token’ that can be sold on the Internet or used in the future to obtain products or services and, at times, profits.”); Fisch, supra note 16, at 3 (defining ICOs broadly as “a mechanism used by new ventures to raise capital by selling tokens to a crowd of investors,” implying that ICOs utilize a crowdfunding approach); Moral Hazard, supra note 11, at 2 (defining ICOs as “smart contracts programmed on distributed ledger technology (DLT), which are designed to raise external finance without the need for an intermediary by issuing tokens or coins that can be publicly traded.”).
2. What Are the Benefits of ICOs?

The idea of ICO was first applied by J.R. Willet to launch the Mastercoin in 2013.98 Four years later, in 2017, over $10 billion was raised by over one thousand firms,99 and by October 2018, over $21 billion was raised by over three thousand firms.100 Against that background, this subpart discusses the benefits associated with ICOs—both from investors’ perspectives and from firms’ perspectives—which may partially explain this rapid growth.

From firms’ perspectives, there are four major benefits associated with ICOs. First, when an issuer issues a utility token (e.g., a token that grants the right to access a future service), it can create a user base during the ICO itself.101 In such cases, token holders become not only investors who help to fund the service but also future users of this very service,102 and hence they are likely to be more engaged in the project. They can help the issuer, for example, to test earlier versions of its service and assess whether additional adjustments are required,103 information that can be very valuable to ICO’s issuers given the immaturity of the ICO industry. Additionally, in such cases, the ICO provides the issuer “with an early signal about consumer demand, which enables better informed investments in building the platform.”104

Second, and related to the previous point, issuers conducting an ICO potentially can benefit from a network effect. Lin William Cong \textit{et al.} developed a theoretical model with respect to this matter, according to which when a platform has a native token (coin), investors (users) join the platform not only to enjoy its utility, but also to benefit from the rising token price as a result of the growing network size.105 Since the value of the issued tokens is determined (at least partially) by the network size of its users, issuers have an incentive to attract as many

\begin{itemize}
 \item 98 Shin, \textit{supra} note 1.
 \item 99 \textit{ICO Market Analysis 2018}, \textit{supra} note 2, at 4.
 \item 100 Momtaz \textit{et al.}, \textit{supra} note 3, at 33.
 \item 101 Howell \textit{et al.}, \textit{supra} note 89, at 7.
 \item 102 Collomb \textit{et al.}, \textit{supra} note 78, at 287.
 \item 103 \textit{Id.}
\end{itemize}
users as possible, and investors have an incentive to prejoin the ICO—to benefit from the value appreciation.

Third, using the ICO mechanism, firms can raise capital from the public without diluting their holdings in the company. Tokens can represent a variety of rights and obligations and can be defined to embody utility-like rights only. Indeed, empirical evidence suggests that the majority of ICOs do not confer ownership rights.

Last, the ICO mechanism provides firms with benefits in terms of global outreach and transaction costs. The process of creating a new token can be very simple and cheap using the ERC20 standard. Potential issuers can download the code for the token from Ethereum’s website and then easily adjust the code to set parameters like the total amount of tokens that they want to create. Similarly, the launch of the ICO itself is very simple and cheap compared to IPOs. The issuer simply creates an address to which investors’ funds will be sent, and after investors send their funds to the address, they receive tokens in accordance with a predefined exchange ratio (e.g., 1 Ether = 500 Tokens). On top of that, ICO operates as a “worldwide crowdfunding event,” which means that issuers may easily obtain a global outreach.

From investors’ perspectives, the ICO mechanism offers a twofold benefit. First, investors may enjoy liquidity in early stages of the company. Most ICO projects are launched at the idea stage, and their tokens become tradeable on average between 18.5–93 days after the ICO ends. This means that investors can easily sell their

107. Howell et al., supra note 89, at 8.

110. See Montaz, Initial Coin Offerings, supra note 106, at 10 (explaining that the process of creating a token is straightforward and may be completed within minutes).

111. Id.

112. Id.

113. Rohr & Write, supra note 27, at 478.

115. Hugo Benedetti & Leonard Kostovetsky, Digital Tulips? Returns to Investors in Initial Coin Offerings 19 (May 20, 2018) (unpublished manuscript) (on file with author), [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3182169] (archived Nov. 11, 2019) (finding that the average time is thirty-one days and the median time is 16 days). They also find that some ICOs were listed prior to the end of the ICO. Id.; Lee et al., supra note 18, at 25 (finding that the
holdings in the early stages of the firm. Second, investing in ICOs is easy and cheap. In order to invest in a foreign company through an IPO, a potential investor will probably need to use the services of a broker. In ICOs, on the other hand, potential investors need only to have access to the internet. This means that, from an investor’s perspective, investing in ICOs is often easier and less costly compared to IPOs.

3. How Do ICOs Work?

This subpart outlines the process that a venture undergoes during the ICO. The ICO process can be divided into three stages: pre-ICO, ICO launch, and post-ICO.

Pre-ICO: At the first stage, ICOs are generally announced on the internet, mainly in cryptocurrency forums (such as BitcoinTalk). The announcements usually include executive summaries presenting the idea of the project, and their objectives are to attract interest and obtain feedback from the community. After the announcement, the venture typically publishes a white paper that discloses information about the project, like a prospectus for an IPO. As the ICO market is yet unregulated, the information disclosed in the white paper is unaudited and hence limited and often misleading.

average time from ICO completion to listing is 18.5 days); Momtaz, Initial Coin Offerings, supra note 106, at 17 (finding that the average time from the end of ICO to first listing is ninety-three days).

117. Id.

118. For other descriptions of the ICO process, see Thomas Bourveau, Emmanuel T. De George, Atif Ellahie & Daniele Macciocchi, Initial Coin Offerings: Early Evidence on the Role of Disclosure in the Unregulated Crypto Market 56–57 (July 9, 2018) (unpublished manuscript) (on file with Univ. of S. Cal., Marshall Sch. of Bus.) (providing the detailed steps of the ICO process); Collomb et al., supra note 78, at 276–279 (defining the process as (i) prior to, (ii) during, and (iii) after the contribution period); Howell et al., supra note 89, at 9–14.

119. Lee et al., supra note 18, at 8.

121. See id. (explaining the objectives of announcing an ICO); Lee et al., supra note 18, at 26.

122. Bourveau et al., supra note 118, at 57; Lee et al., supra note 18, at 7.

123. While white papers vary dramatically, they generally include information about: (1) the business model; (2) the technical aspects and the source code; (3) the issued token—the rights and obligations attached to it; (4) the token supply, allocation, and
With regard to the marketing process, issuers of an ICO generally communicate directly with potential investors through social media platforms. Lauren Rhue found that every ICO has a median of eight social media links on its website, and Sabrina T. Howell et al. found that 87 percent (97 percent) of ICOs have a Telegram group (Twitter account) with an average of over five thousand (22,200) members (followers). Social media channels play an important role in ICOs' marketing, allowing the issuers to provide ongoing updates about the project and respond to investors' questions and queries.

As a part of the marketing process, some ventures also execute bounty programs and airdrops. The former is a program in which a venture offers rewards (generally in the form of the issued digital tokens) in exchange for performing certain tasks. For example, an
ICO may reward rating websites for writing an article about the ICO, or individuals for translating their documents into different languages or fixing bugs in the underlying code.\(^{129}\) The latter is a program in which the venture distributes digital tokens to investors entirely for free.\(^{130}\) Sometimes, in order to receive the "free" tokens, investors are required to follow the venture on social media.\(^{131}\) The rationale here is to raise awareness of the project and encourage the token's adoption (network effect).\(^{132}\)

Normally, ventures also disclose their underlying code on an online code repository (mainly GitHub),\(^{133}\) enabling potential investors to preassess their code before the ICO.\(^{134}\) Publishing the underlying code provides a "powerful form of transparency," and it also "leverages the wisdom of the crowd to identify bugs and improve quality."\(^{135}\)

Additionally, ICOs generally conduct private and public presales prior to the launch.\(^{136}\) The purpose of the early funding is twofold.

\(^{129}\) Id. For examples, see COBINHOOD’s and COTI’s bounty programs: COBINHOOD, Bug and Security Breach Bounty Program Get COB rewards for Reporting Platform Issues, MEDIUM (Nov. 10, 2017); COTI, COTI Launches Bounty Program in Partnership with Bounty0x (15/4 Update), STEEMIT (Nov. 30, 2017), https://steemit.com/cryptocurrency/@cotinetwork/coti-launches-bounty-program-in-partnership-with-bounty0x-15-4-update [https://perma.cc/FB4T-UL6J] (archived Nov. 11, 2019).

\(^{130}\) See OECD, supra note 108, at 11.

\(^{131}\) When this is the case, the tokens are not entirely free. Instead, they are distributed in exchange for investors’ personal data. See Zax, Is Personal Data the New Currency? MIT TECH. REV. (2011) (explaining that Facebook and other social networks make money off of data collection), www.technologyreview.com/s/426235/is-personal-data-the-new-currency (last visited Nov. 11, 2019) [https://perma.cc/ZWZ8-GRGY] (archived Nov. 11, 2019); Jonathan Klinger, The ICO Handbook Chapter: Six, Airdrops, STEEMIT (Feb., 2018), steemit.com/ico/@jonklinger/chapter-six-airdrops (last visited Nov. 11, 2019) [https://perma.cc/6Q5C-KRUX] (archived Nov. 11, 2019) (highlighting that tokens may be distributed based on interaction with social media accounts and the value of this data collection may be quantifiable).

\(^{132}\) See Brady Dale, So Long ICOs, Hello Airdrops: The Free Token Giveaway Craze Is Here, COINDESK (Mar. 16, 2018), www.coindesk.com/long-icos-hello-airdrops-free-token-giveaway-craze/ [https://perma.cc/R9XL-EBQS] (archived Nov. 9, 2019) (explaining that tokens are provided to potential users for joining the network to increase the value of the network).

\(^{133}\) See infra Part III.B.2.

\(^{134}\) See Adhami et al., supra note 7, at 4, 7 (explaining that the disclosure helps investors determine the technical value of the idea and prior work of the team).

\(^{135}\) Howell et al., supra note 89, at 24.

\(^{136}\) Adhami et al., supra note 7, at 9 (finding that thirty-eight percent of the sample organized presales); Benedetti & Kostovetsky, supra note 115, at 44 (finding that forty percent of the sample had a presale); Fisch, supra note 16, at 14 (finding that sixty-four percent of the sample had a presale); Howell et al., supra note 89, at 12, (finding that forty-five percent of the sample had a presale); Momtaz, Initial Coin Offerings, supra note 106, at 9 (finding that forty-four percent of the sample had a presale); Zetzsche et al., supra note 82, at 7 (finding that twenty-two percent of the sample...
First, to finance the costs of promoting the ICO in the preliminary stage. Second, analogous to the book-building process in IPOs, early investments rounds provide an indication of the demand for the token, thus helping to determine an appropriate price for the launch. The presale targets larger investors, mainly institutional investors, and VCs, and offers them discounts or bonuses in exchange for taking more risk (investing at an early stage).

The Launch of the ICO: During the main sale, the venture issues digital tokens for a predefined period. The contribution period can be either fixed in time or capped by a predetermined threshold. The venture generally specifies a hard cap, which is the maximum amount of capital they aim to collect, and a soft cap, which is the minimum amount of funds required for the ICO to process as planned. An ICO is considered successful if it reaches its soft cap during the contribution period; otherwise, the funds are usually returned to the investors. If the hard cap is reached, the token sale ends.

The contribution during the token sale is made through the project website. Investors are required to transfer money (either crypto or fiat currencies) to a smart contract address, which in return transfers a predefined amount of tokens to the sender. The sale itself operates as a “worldwide crowdfunding event.” However, due to regulatory concerns, ICOs often exclude residents of certain countries (mainly China and the United States).

The pricing mechanisms by which ICOs sell their tokens are usually announced to the public prior to the token sale and include a few different schemes. Most ICOs sell their tokens during the launch, on a fixed price and “first-come, first-served” basis; others establish dynamic pricing mechanisms, in which the price changes during the sale in a predefined way or in a way that reflects the demand of the token; and some ICOs use an auction mechanism. Gnosis, for example, used a reverse Dutch auction, in which the portion of tokens sold and their price depended on how long the sale took to finish.

organized a presale, but suggest that the actual number is higher, given the information asymmetry associated with ICOs).

137. Howell et al., supra note 89, at 12.
138. Usually a minimum contribution threshold is specified for the presales.
139. Howell et al., supra note 89, at 12.
140. Collomb et al., supra note 78, at 277.
141. See Lee et al., supra note 18, at 40.
142. Id. at 8.
143. Id.
144. Rohr & Wright, supra note 27, at 473–75
145. Id. at 478.
146. See infra Part III.C.2.
147. Howell et al., supra note 89, at 11.
148. Id.
149. Id. at 12.
Post-ICO: After the token sale ends, ICOs generally list their tokens in crypto exchanges, and the issued tokens are then traded on the secondary market.151 A portion of the tokens received during the main token sale is usually reserved for founders, employees, and platform development, and/or for incentivizing future network contributors.152 These tokens are generally locked in smart contracts for a specific period or until certain development milestones have been achieved. Such lock-up mechanisms prevent founders from dumping their tokens after the ICO ends and may increase investors' confidence and certainty about the use of proceeds.153

4. How is an ICO Different from an IPO?

In an ICO, like in an IPO, a company issues a share (a token) in order to raise public capital, and this share (token) is then traded on the secondary market. Nevertheless, there are major differences between the two methods.154

First, the rights conferred to investors of an ICO are considerably different from those of an IPO.155 In an IPO, shareholders get ownership rights in the company, dividend rights, and voting rights depending on the type of the shares issued.156 In an ICO, by contrast, the issued tokens can represent a variety of rights and obligations and can be defined to embody utility-like rights only. This difference implies that issuers of an ICO can raise public capital without diluting their ownership over the company, thus overcoming a major impediment associated with an IPO.157

151 See infra Part III.E.1.

152 Howell et al., supra note 89, at 11.

153 Bourveau et al., supra note 118, at 36–38.

154 For a comparison between IPOs and ICOs, see OECD, supra note 108, at 24–26; Collomb et al., supra note 78, at 293–300; Lee et al., supra note 18, at 51.

155 OECD, supra note 108, at 25 (detailing that IPOs confer ownership rights and ICOs do not); Collomb et al., supra note 78, at 287 (explaining that an IPO is concerned with issuance of stock that will dilute the ownership for existing shareholders, whereas an ICO refers to tokens that may not be directly tied to a company).

156 OECD, supra note 108, at 25.

157 See id. (explaining that ICOs may be advantageous to entrepreneurs who do not want to give away any ownership.
Second, and related to the previous point, documentation requirements are different. While a company that launches an IPO faces disclosure and registration requirements imposed by the securities regulator, ICOs' disclosure requirements are unclear and depend on their function as well as on the governing jurisdiction. Most ICOs generally publish a white paper that outlines the business model of the project, a technical white paper that features the technological aspects of the project, and the source code of the project. However, unlike IPOs' documentation, ICOs' documentation format is not standard and the documents disclosed tend to be poor and often misleading. This absence of standard disclosure requirements exacerbates the information asymmetries between token issuers and investors.

Third, ICOs are launched at a lower level of maturity compared to IPOs. In order to initiate an IPO, a potential issuer will have to "demonstrate a proper (and stable) amount of revenues, which can only be achieved after a company has reached a certain level of maturity." This is partially due to the listing requirements of exchanges and the tendency of investment banks (which act as underwriters) to select IPOs that have the potential to perform well after. ICOs, on the other hand, allow firms to raise public capital outside of the traditional capital market—without the involvement of underwriters and traditional exchanges—and thus they can be launched at a very early stage. Indeed, empirical evidence suggests that the majority of ICOs are launched at the idea stage. This difference between ICOs' and IPOs' levels of maturity is important because it translates into different degrees of risk and information asymmetries.

Fourth, ICOs' marketing process is significantly different from IPOs' marketing process. While in an IPO an underwriter conducts a book-building process, ICOs' marketing is done primarily through social media channels. In contrast with IPOs, which generally use social media to raise awareness for the project, ICOs use social media to publish vital information like launch announcements and to

159. See infra Part III.B.
160. See Information Intermediaries, supra note 123, at 1–3.
162. Collobm et al., supra note 78, at 296–297.
163. Id.
164. Id. at 297.
165. EY 2017, supra note 114, at 16 (finding that most ICOs are in the idea stage, and their platforms/services are expected to be launched in a year or more after the ICO).
166. Collobm et al., supra note 78, at 296 & n.102; Fisch, supra note 16, at 6.
167. See infra Part III.B.3.
communicate directly with potential investors.168 This difference in the way firms market their launches and communicate with their investors translates into different investor–investee relationships, and is important since it affects the way by which firms can reduce uncertainty about their projects.

III. ICO CHARACTERISTICS—REVIEW AND ANALYSIS OF THE EMPIRICAL LITERATURE

ICO is a relatively new concept, and accordingly the literature on ICOs is still in its infancy. Many aspects of this newly innovative market—such as terminology, token typology, regulation, and token valuation—have remained unclear. This Part focuses on the growing body of empirical literature on ICO characteristics and determinants of ICO success and returns. It systematically reviews over twenty empirical studies, most of which were conducted during 2018–2019, and identifies key success factors. Subsequently, it offers theoretical explanations, and in certain cases, connects the empirical results with the IPO and crowdfunding literatures. The analysis presented in this Part is important, because there is no single formal data source, and there is evidence of inconsistencies across the different data sources available.

A. A General Overview

The idea of ICOs was first applied in 2013.169 Four years later, in 2017, over $10 billion was raised by over one thousand firms;170 by October 2018, over $21 billion was raised by over three thousand firms.171 Similarly, while the largest ICO in 2016, Wave, raised around $16 million,172 the largest ICO in 2018, EOS, raised $4.2 billion.173

The rapid growth of the crypto market and ICOs in particular can be explained by several factors. First, cryptocurrencies are perceived

170. ICO Market Analysis 2018, supra note 2.
171. Momtaz et al., supra note 3, at 33.
172. For an overview of the top ICOs completed in 2016 and 2017, see Bourveau et al., supra note 118, at 51.
by investors as a "hedge against volatile local currencies and geopolitical risk," and their growth might be related to a continuing distrust in the traditional banking sector since the 2008 financial crisis.

Second, in the aftermath of the global financial crisis, conventional banks and VC firms became more selective when granting loans, thus pushing start-ups to seek for an alternative source of finance. Third, as previously discussed, ICOs are attractive for ventures due to low transaction costs and potential global outreach. Fourth, the increased media attention, combined with astronomic returns for early investors—with ROIs exceeding 50,000 percent—and a network effect, have attracted new investors and ventures.

1. Fundraising Success Rate

Empirical studies suggest that while the ICOs' fundraising success rate was considerably higher in the early days of the market, it has been decreasing since the second half of 2017. Jongsun Lee et al. found that the fundraising success rate in the first quarter of 2018 was approximately 50 percent, down from 90 percent in the second quarter of 2017. Ernst & Young found that "in November 2017, less than 25% hit goals, compared with more than 90% in June." Hugo Benedetti and Leonard Kostovetsky analyzed 2,390 ICOs that occurred between January 2017 and March 2018 and found that only 48 percent had "non-zero and non-missing values for capital raised" and that only 26 percent "have listed their tokens on an exchange." Conversely, Saman Adhami et al. analyzed a sample of 253 ICOs that occurred from 2014 to August 2017 and found that 81 percent of ICOs were successful. This sharp deterioration in fundraising success may be

174. Clements, supra note 4, at 78.
176. See infra Part II.D.2.
177. Clements, supra note 4, at 86.
179. Clements, supra note 4, at 77.
180. See Lee et al., supra note 18, at 15, 36.
181. EY 2017, supra note 114, at 8.
183. Adhami et al., supra note 7, at 8–10.
due to increased regulation, or, alternatively, to the lemons problem: the “hot” market has attracted low-quality ICOs.184

2. Gross proceeds

Empirical studies suggest that during 2015–2018 the average number of funds raised by an ICO was between $13–$16 million.185 For example, according to a 2018 report by ICOBench, the average number of funds raised by an ICO during 2017 was $14.1 million.186 Similarly, a report by Tokendata and Fabric Ventures suggests that the average number of funds raised in 2017 was $13 million.187 Other recent empirical studies—which analyze a dataset of ICOs conducted primarily between 2015 and 2018—find that the average number of funds raised in an ICO is around $15–$16 million.188 These results are interesting, because most ICOs are launched at a very early stage and provide little information for investors, but yet manage to raise a large amount of funds. All these empirical studies also find a big difference between the average and the median indicator, indicating that the amount raised in an ICO is skewed toward large ICOs.

3. The Geography of ICOs

According to ICOBench, the most comprehensive database to date, the top country in the number of ICOs is the United States, followed by Singapore, the United Kingdom, and Russia.189 The United States

184 Lee et al., supra note 18, at 15–16; see generally Akerlof, supra note 12 (explaining the incentive to market poor quality merchandise when returns for good quality merchandise affect the whole market instead of the individual seller).

185 ICO Market Analysis 2018, supra note 2.

186 ICO Market Analysis 2018, supra note 2, at 4.

188 See, e.g., Ryan Amsden & Denis Schweizer, Are Blockchain Crowdsales the New ‘Gold Rush’? Success Determinants of Initial Coin Offerings 54 (Apr. 16, 2018) (unpublished manuscript) (on file with author), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3163849 [https://perma.cc/319B-RQUP] (archived Nov. 11, 2019) (finding that the average (median) number of funds raised in an ICO is $15.24 million); Lyandres et al., supra note 9, at 16 (finding that the average number of funds raised in an ICO is $15 million and the median funds raised is $5 million); Momtaz, Initial Coin Offerings, supra note 106, at 2. (finding that the average number of funds raised in an ICO is $15.1 million and the median number of funds raised is $5.8 million).

189 Stats, ICOBENCH, icobench.com/stats (last visited Nov. 11, 2019) [https://perma.cc/K3UY-2WKE] (archived Nov. 11, 2019) (as of Oct. 24, 2019, the database consists of 5607 ICOs. 706 in the US, 575 in Singapore, 498 in the UK, and 328
is also the top country in capital raised, followed by Singapore, British Virgin Islands, and Switzerland.¹⁹⁰ These results are interesting as the market shares of countries with relatively small capital markets and economics (e.g., Singapore, Switzerland, and British Virgin Islands) are significantly high.¹⁹¹ This could be due to their crypto-friendly regulatory approach,¹⁹² and it implies that a regulatory arbitrage exists in the market. Consistent with this interpretation, an empirical report by Token Data and Fabric Ventures shows a significant difference between the leading countries from a legal domicile perspective and the leading countries from founders’ location perspective.¹⁹³ For example, it shows that in 2017, legal entities located in Switzerland raised $1.06 billion compared to the $177 million raised by founders from Switzerland.¹⁹⁴

A few empirical studies analyzed the geography of ICOs, trying to answer the question of why ICOs are more prevalent in some countries relative to others. Winifred Huang et al., for example, found that ICOs are more likely to take place in countries that actively present their regulatory intentions, instead of banning ICOs or taking no action, and that tax level had no significant effect.¹⁹⁵ They also found that ICOs occur more frequently in countries with developed financial markets, and where information and communication technology is more advanced.¹⁹⁶ A possible explanation for the former result is that a well-

¹⁹⁰. Stats, ICOBENCH, supra note 190 ($7.3 billion in the US, $2.5 billion in Singapore, $2.4 billion British Virgin Island, and $1.8 billion in Switzerland).

¹⁹¹. For example, while the market capitalization of listed companies in the United States in 2018 was over forty times larger than Singapore and twenty times larger than Switzerland, the market capitalization of ICOs in the Unites States was less than three times larger than Singapore and five times larger than Switzerland. See Market capitalization of listed companies in current prices, KNEOMA, https://knoema.com/atlas/topics/Economy/Financial-Sector-Capital-markets/Market-capitalization (last visited Nov. 11, 2019) [https://perma.cc/9HR8-KMDR] (archived Nov. 11, 2019); Zetzsche et al., supra note 82, at 11–12.

¹⁹². Winifred Huang, Michele Meoli & Silvio Vismara, The Geography of Initial Coin Offerings SMALL BUS. ECON. 6 (2019) (finding that ICOs are more pervasive in countries with ICO-friendly regulations, such as Singapore and Switzerland).

¹⁹⁴. Id.

¹⁹⁵. Huang et al., supra note 192, at 18.

¹⁹⁶. Id. The former finding is consistent Haddad and Hurnuf who found that Fintech startup formations occur more frequently in countries with well-developed
developed financial market offers greater potential to change existing business models through innovative services and that, in a more elaborated financial system, entrepreneurs have better access to the capital required to fund their business. An explanation for the latter result is that the development of information and communication technology embraces “well-functioning infrastructure facilities and tech-skilled human capital [that] can accelerate the demand for digital entrepreneurship.” Benedetti and Kostovetsky found that listed ICOs are more likely to take place in “countries that are 0.2 points higher in their Rule of Law rating and have about $4,000 more in GDP per capita, relative to the entire sample.”

B. Pre-ICO Practices

1. White Paper Disclosure

White paper disclosure—focus on quality: Most ICOs disclose a white paper that features the business and technical model of the project prior to launch. Empirical studies analyze the relation between disclosing a white paper and ICO success. On the one hand, Howell et al. found that disclosing a white paper is positively associated with liquidity, which is a proxy of ICO success and volatility. On the other hand, Thomas Bourveau et al. found that more unsuccessful (88 percent) than successful issuers (78 percent) disclose a white paper, and Adhami et al. and Dmitri Boreiko and

197. Haddad & Hornuf, supra note 196, at 82–83; Huang et al., supra note 192, at 3.
198. Huang et al., supra note 192, at 6.
199. They rely on World Bank Rule of Law rating, which captures “perceptions of the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, property rights, the police, and the courts, as well as the likelihood of crime and violence.” Daniel Kaufmann, Aart Kraay & Massimo Mastruzzi, The Worldwide Governance Indicators: Methodology and Analytical Issues, 3 HAGUE J. ON THE RULE OF LAW 220, 223 (2011).
200. Benedetti & Kostovetsky, supra note 115, at 17–18. These results are consistent with Haddad and Hornuf who found that GDP per capita is significant in explaining the number of financial technology (fintech) startups in a country and with Rau who found that the Rule of Law ranking is significantly and positively related to crowdfunding volume within a country. See Raghavendra Rau, Law, Trust, and the Development of Crowdfunding 25 (June 20, 2017) (unpublished manuscript) (on file with Soc. Sci. Research Network); Haddad & Hornuf, supra note 196, at 92.
201. Howell et al., supra note 89, at 38 (finding that eighty-one percent of ICOs disclosed a white paper).
202. Id. at 3.
203. Bourveau et al., supra note 118, at 42.
Gioia Vidusso found that there is no significant association between disclosing a white paper and ICO success. These results suggest that the quality of the white paper matters and that simply disclosing a white paper is not enough. As discussed above, the information disclosed in white papers is unaudited and often misleading, and hence these results are not surprising.

Consistent with these results, empirical studies found that proxies of the quality of a white paper are associated with success. Evgeny Lyandres et al., for example, found that the number of unique words in the white paper (identified by natural language processing (NLP)) is positively and reliably associated with the amount raised and with the probability of listing. Ryan Amsden and Denis Schweizer, Bourveau et al., and Christian Fisch found that the length of the white paper is positively associated with the amount raised. However, the length of the white paper does not necessarily signal quality. In fact, in the context of equity crowdfunding, Kim et al. found that offering too much information about the idea undermines entrepreneurs' chances of fully securing the resources they need; but, given the information asymmetry associated with the market, it is possible that longer white papers are perceived by investors as a valuable signal. Bourveau et al. found that white paper opacity is negatively associated with the amount raised and with liquidity and positively associated with low returns (negative 75 percent) in the long term. They also found that having an informative white paper (dummy variable according to ICOBench) reliably predicts ICO success, but when they manually analyze the association between disclosure practices (ICO team information, token allocation information, founder tokens vesting period, use of proceeds, white paper opacity, and white paper length) and ICO success, they found no significant association.

Information about regulatory status: Adhami et al. found that only in 19 percent of ICOs, the white paper specifies the jurisdiction that

204. Dmitri Boreiko & Gioia Vidusso, New Blockchain Intermediaries: Do ICO Rating Websites Do Their Job Well?, 21 J. ALTERNATIVE INV. 67 (2019); Adhami et al., supra note 7, at 8.
205. Lyandres et al., supra note 9, at 23.
206. Amsden & Schweizer, supra note 188, at 19; Bourveau et al., supra note 118, at 46 (finding that log USD raised is positively correlated with white paper length. However, they also find that having a longer white papers is associated with future crash risk); Fisch, supra note 16, at 15 (finding that white paper length has a positive effect on the amount of funds raised (p<1%)).
207. See generally Phillip H. Kim, Mickaël Buffart & Grégoire Croidieu, TMI: Signaling Credible Claims in Crowdfunding Campaign Narratives, 41 GROUPS & ORG. MGMT. 717 (2016); Fisch, supra note 16, at 15.
208. Bourveau et al., supra note 118, at 51 (white paper opacity is “[T]he Gunning Fog index for the whitepaper calculated as (words per sentence + percent of complex words) × 0.4”).
209. Id.
210. Id.
regulates the ICO.211 Nevertheless, the vast majority of ICOs have been successful.212 Similarly, Dirk A. Zetzsche \textit{et al.} found that only 32.7 percent of ICOs specify the applicable law and that most white papers do not provide information about the regulatory status of an ICO.213 As most ICOs in their samples have been successful, these results suggest that potential investors are insensitive to regulatory issues.214 An alternative interpretation for these results is that ICO initiators—especially in the early days of the market—have been unable to specify the applicable law and jurisdiction due to regulatory uncertainty.

\textit{Focus on technical aspects:} While investors are insensitive to regulatory issues, empirical evidence suggests that potential investors are very sensitive to technological aspects. Adhami \textit{et al.} found that specifying the jurisdiction that regulates the token sale has a much smaller influence on an ICO's success compared to source code disclosure.215 Consistent with these results, Paul P. Mootz found that the market uncertainty derived from technical issues—for example, the hacks of Parity Wallet216—has a much stronger negative effect on ICO returns than regulatory actions, such as China's and Korea's bans.217 Lyandres \textit{et al.} found that the probability of listing increases proportionately to the technical language in the white paper.218 Fisch found that having a technical white paper strongly and significantly (p<1 percent) affects the amount raised.219 He suggested that investors might interpret a technical white paper as a strong predictor of a venture's underlying technological capabilities.220 Chen Feng \textit{et al.} found that the amount of technical language in white papers predicts

\begin{thebibliography}{99}
\bibitem{211} Adhami \textit{et al.}, \textit{supra} note 7, at 6–8.
\bibitem{212} \textit{Id.}
\bibitem{213} Zetzsche \textit{et al.}, \textit{supra} note 82, at 11.
\bibitem{214} \textit{Id.}
\bibitem{215} Adhami \textit{et al.}, \textit{supra} note 7, at 10.
\bibitem{218} Lyandres \textit{et al.}, \textit{supra} note 9, at 23.
\bibitem{219} Fisch, \textit{supra} note 16, at 12–14.
\bibitem{220} \textit{Id.}
\end{thebibliography}
success only for high-quality ICOs. A possible interpretation is that projects are more likely to provide technical discussions in the white paper when they are in more advanced stages.

Use of proceeds disclosure: Firms conducting an IPO are required by securities regulators to include in their prospectuses the intended use of proceeds. Empirical evidence shows that firms that disclose more (less) specific information about their intended use of proceeds have lower (higher) underpricing, suggesting that a more detailed use of proceed disclosure reduces ex ante uncertainty about the value of the firm. In contrast with IPOs, companies that launch ICOs are not required to disclose information about their use of proceeds, and empirical studies found that the majority do not disclose information about the use of proceeds. Empirical studies also analyzed the association between disclosing information about the use of proceeds and success and came up with contradictory results. On the one hand, Howell et al. found that disclosing information regarding the use of proceeds is positively associated with liquidity and volatility, suggesting that ICOs have a self-incentive to disclose such information. On the other hand, Bourveau et al. found that disclosing information regarding the use of proceeds does not affect successful completion, and Feng et al. found that it is negatively associated with success.

Token allocation information disclosure: In their white papers, ICOs generally feature information about token allocation—the fraction of tokens allocated to founders, advisors, early investors, etc. On the one hand, Daniel Blaseg found that disclosing token allocation predicts success, suggesting that it reduces ex ante uncertainty. On the other hand, however, Bourveau et al. found that disclosing

222. See Id. at 6; Lyandres et al., supra note 9, at 23.
225. Bourveau et al., supra note 118, at 42–45 (finding that forty-five percent of failed and forty-nine percent of completed ICOs have disclosed information about use of proceeds); Adhami et al., supra note 7, at 7 (finding that only 30.8 percent of ICOs have disclosed information about use of proceeds).
226. Howell et al., supra note 89, at 29.
227. Bourveau et al., supra note 118, at 45.
228. Feng et al., supra note 221, at 5, 39.
information about token allocation is negatively associated with the amount raised, and Feng et al. found it to be negatively but insignificantly (in most specifications) associated with ICO success. The former may indicate that token allocation is often not optimal, and hence if ventures disclose information about it, it negatively affects the fundraising. The latter result may indicate that investors do not value this type of disclosure.

Information about the initiators: A growing body of literature in the IPO context examines the role of the management team as a signal. The rationale for focusing on social indicators—such as information about the initiators—is that "investors who are unable to discern the venture's quality from economic disclosure turn to more social indicators." Therefore, the focus on social indicators is greater in the presence of market uncertainty. Empirical studies support the proposition regarding the management team's importance as a signal, showing a significant and positive relationship between management characteristics—such as management team legitimacy, team size, education, and prior industry experience—and venture financial performance.

Considering the high market uncertainty in ICOs, we would expect team characteristics to be an important indicator. Several studies have examined the association between ICO success and information disclosed about (1) the team in general; (2) team members' reputations and experiences; and (3) team size. First, Bourveau et al. found that simply disclosing biographical information about the team is negatively associated with crash risks in the long term and with illiquidity and positively correlated with the amount raised. Similarly, Blaseg found that simply disclosing the number of team members increased the probability of listing, suggesting that investors value information about the team. However, Feng et al. found that disclosing the number of team members in the white paper does not affect ICO success. Second, Bourveau et al. showed that investors value team members' reputations, finding that the number of team members previously involved in a successful ICO is associated

230. Bourveau et al., supra note 118, at 44.
231. Feng et al., supra note 221, at 49.
233. See generally Joel M. Podolny, *Market Uncertainty and the Social Character of Economic Exchange*, 39 ADMIN. SCI. Q. 458, 459 (1994) ("in order to avoid the problems posed by market uncertainty and forestall market failure, organizations adopt a more social orientation").
234. For an overview of this area of the empirical literature, see Cohen & Dean, supra note 13, at 685.
235. Bourveau et al., supra note 118, at 46.
237. Feng et al., supra note 221, at 39.
with success.238 In line with this result, Momtaz found that CEOs' prior experience in crypto-related projects is positively associated with first-day return, which suggests that investors are aware of founders' reputations.239 Howell \textit{et al.} found that entrepreneurial experience240 is strongly associated with success, but they also found that experience in finance, crypto, or computer science is not.241 Interestingly, Amsden and Schweizer found that having a well-connected CEO (i.e., a CEO with over five hundred links on LinkedIn) is positively associated with the amount raised.242 Third, the size of the team is associated with success.243 Overall, consistent with our expectations, these results suggest that team characteristics are important signals. Having said that, in practice, many ICOs provide misleading or no information about their initiators.244

\section*{2. Source Code Disclosure}

Prior to launch, ventures generally disclose their underlying code on an online code repository (mainly GitHub).245 Most empirical studies found that source code disclosure is positively and significantly associated with successfully completing the ICO,246 with liquidity and

\begin{flushleft}
238 Bourveau et al., \textit{supra} note 118, at 46.
239 See Moral Hazard, \textit{supra} note 11, at 31. Interestingly, he also found that CEOs' prior experience in crypto-related projects is positively associated with project failure ("defined as events in which tokens are delisted from all exchange platforms") (see \textit{id}. at 18). His suggested explanation "is that many CEOs had prior projects that failed, which might send a negative signal" (see \textit{id}. at 31).

240 Howell \textit{et al.}, \textit{supra} note 89, at 23 (a dummy variable that equals 1 if the founder claims on LinkedIn to have previously founded a company).

241 \textit{Id}. at 3.

242 Amsden & Schweizer, \textit{supra} note 188, at 64.

244 See Zetzschke \textit{et al.}, \textit{supra} note 82, at 15.

245 See generally Amsden & Schweizer, \textit{supra} note 188 (finding that forty-eight percent of ICOs disclosed their source-code on GitHub); Adhami \textit{et al.}, \textit{supra} note 7 (finding that forty percent of ICOs disclosed their source code); Howell \textit{et al.}, \textit{supra} note 89 (finding that sixty-six percent of ICOs disclosed their source code); Fisch, \textit{supra} note 16 (finding that sixty-seven percent of ICOs disclosed their source code).

246 See, e.g., Bourveau \textit{et al.}, \textit{supra} note 118, at 46; Adhami \textit{et al.}, \textit{supra} note 7, at 9.
\end{flushleft}
volatility, with the amount raised, and with the probability of having tradable tokens after ICO completion. Adhami et al. suggested that source code disclosure allows potential investors to preassess the technical validity of the project, and thus it is an important signal. In contrast, Fisch found that source code disclosure does not predict success, but only the quality of the code (measured by the number of defect fixed in GitHub). He suggested that high quality code signals high technological capabilities. In line with this, Rhue found that the number of bugs in the token code, identified by Etherscan, is negatively and significantly associated with market cap; Howell et al. found a negative relation between days from last commit (revision) and liquidity, which suggests that being active on GitHub is a positive signal for potential investors; and Blaseg also found source code quality, measured in accordance with BetterCodeHub Guidelines on Maintainable Software, strongly predicts ICO success.

Ironically, while investors tend to be highly sensitive to source code disclosure and quality, Shaanan Cohney et al. empirically showed significant mismatches between promises made in white papers and the actual code, and that the number of uncoded promises does not affect ICO success. This implies that investors either do not review the source code or are unable to assess its quality. In the long term, however, they found a negative correlation between price appreciation and the number of uncoded promises, suggesting that information asymmetry decreases as time goes by. A potential interpretation for these results is that when an ICO raises a large amount of money, it attracts attention from independent parties (or competitors), who assess its underlying code and then post their findings on social media.

247. See, e.g., Howell et al., supra note 89, at 44.
248. See, e.g., De Jong et al., supra note 243, at 4.
249. See, e.g., Amsden & Schweizer, supra note 188, at 43.
250. Adhami et al., supra note 7, at 7.
252. Id.
253. Rhue, supra note 9, at 20.
256. See generally Cohney et al., supra note 26.
257. Id. at 613.
258. This interpretation corresponds with Bourveau et al, who found that source code disclosure is positively correlated with crash risks in the long term. They suggest that by disclosing the source code, ICOs enable other ventures to imitate their technology, and therefore may lose their competitive advantage. See Bourveau et al., supra note 118, at 40.
3. Social Media and Marketing

Social media platforms play a vital role in ICOs. While firms launching an IPO generally use social media to raise awareness for the project, in the case of ICOs vital information like launch announcements, or the start of trading, is often publicized on social media.\(^{259}\) The importance of social media could be attributed to the information asymmetry associated with ICOs.\(^{260}\) Presence on social media sites enables potential investors to communicate directly with the entrepreneurs, and thus reduces the uncertainty around the project.\(^{261}\) Empirical studies show that most ICOs are indeed very active on social media platforms. Rhue found that every ICO has a median of eight social media links\(^ {262}\) and Howell \textit{et al.} found that 87 percent (97 percent) of ICOs have a Telegram group (Twitter account) with an average of over five thousand (22,200) members (followers).\(^ {263}\)

Social media activity and presence predict ICO success: Empirical studies analyzed the relation between social media and different aspects of ICOs and found that social media presence and activity are among the major factors that influence ICO success. Bourveau \textit{et al.} found that social media activity, an indicator measured by ICOBench, is negatively associated with illiquidity, and positively and reliably associated with successfully completing an ICO and with the amount raised for it.\(^ {264}\) Benedetti and Kostovetsky found a positive relationship between market capitalization and number of Twitter followers, and that Twitter accounts with a longer record are associated with success.\(^ {265}\) Amsden and Schweizer found that having a Telegram group is positively and significantly correlated with the probability of having tradable tokens after ICO completion and with the amount raised.\(^ {266}\) Howell \textit{et al.} found that the number of followers on Twitter and Telegram is positively associated with liquidity, but only the former is significantly correlated with long-term returns.\(^ {267}\) Fisch found that a higher level of Twitter activity during the ICO is

\(^{259}\) Chanson et al., supra note 168, at 13.
\(^{260}\) See id.
\(^{261}\) See id.
\(^{262}\) Rhue, supra note 9, at 35.
\(^{263}\) Howell \textit{et al.}, supra note 89, at 24.
\(^{264}\) Bourveau \textit{et al.}, supra note 118, at 25.
\(^{265}\) Benedetti & Kostovetsky, supra note 115, at 29–33, 36 (finding that accounts with a longer record of activity are slightly more likely to be successful, with listed and successful ICOs having an average Twitter age of 9.4 months (median of 4 months) compared to unsuccessful ICOs with an average of 6.6 months. They also find that stronger activity before the ICO, and especially during the ICO, is correlated with success. However, increased tweeting during the ICO could be a result rather than the cause of ICO success, as entrepreneurs are more likely to share good news about strong token sales).
\(^{266}\) Amsden & Schweizer, supra note 188, at 33.
\(^{267}\) Howell \textit{et al.}, supra note 89, at 44.
associated with a higher amount of funding raised (p<5%). Lauren Burns and Andrea Moro found that the number of Twitter followers on the ICO end date is positively correlated with ROI after four months (p<5%) and with the amount raised (p<1%); they also found that the growth in Twitter followers over the four-month period is positively correlated with ROI (p<1%). Similarly, Blaseg found that the presence and activity of an ICO on social media, online forums (e.g., BitcoinTalk), and web traffic analytics platforms (e.g., Alexa rank) predict success; and Boreiko and Vidusso found that the logarithm of total twitter followers before the start of the ICO campaign predicts ICO success. Interestingly, Lyandres et al., found that the level of Twitter activity during the ninety days prior to the ICO is much higher compared to the following ninety days after the end of the ICO.

Content from news website is less important in ICOs: earlier studies have found that ventures can build legitimacy, which is necessary to acquire financial resources, through media coverage in secondary sources of information (e.g., newspapers). In the context of IPOs, the volume of media information that a venture received was found to be negatively associated with underpricing. This may imply that media coverage reduces ex ante uncertainty and increases a venture’s legitimacy. In contrast, in the case of ICOs, Mathieu Chanson et al. found that crypto news prior to ICOs has no significant effect on underpricing. Similarly, Wolfgang Drobetz et al. found that news articles have only a minor effect on ICOs, and a much smaller influence compared to social media activity. On the other hand, Burns and Moro found that the number of news articles which mention the token's name from two months prior to the ICO is positively and significantly associated with the amount raised in the ICO. However, they also found it to be negatively and significantly (p<1%)
correlated with the ROI after four months;279 they suggest that this can be explained by Merton's investor recognition hypothesis.280

4. Presale

ICOs generally conduct private and public presales, which target mainly institutional investors and VCs, and offer them discounts or bonuses in exchange for taking more risk (investing in an early stage).281 Empirical evidence shows that presales are a common practice,282 and that including them is positively and reliably associated with liquidity and volatility,283 with the amount raised, with the probability of the token becoming tradeable,284 and with the likelihood of successfully completing the ICO (i.e., achieving the soft cap).285 As presales are strongly related to the presence of sophisticated investors,286 these results suggest that potential investors regard investments by sophisticated investors as a valuable signal.287 To put

279. Id. (However, they suggest that their result might be inaccurate as they did not divide news articles into positive and negative news). Block et al., for example, find that the type of information provided in updates plays an important role in the context of equity crowdfunding. See Jörn Block, Lars Hornuf & Alexandra Moritz, Which Updates During an Equity Crowdfunding Campaign Increase Crowd Participation? 50 SMALL BUS. ECON. 15 (2018).

280. Robert C. Merton, A Simple Model of Capital Market Equilibrium with Incomplete Information, 42 J. FINANCE 483 (1987); Burns & Moro, supra note 243, at 22. Merton Models informationally incomplete markets in which investors are not aware of the number of securities available in each firm. He suggests that in this model, firms that are recognized by fewer investors (determined by fewer news articles) need to compensate their investors with higher returns. Based on this model, Burns and Moro claim that an increase in the number of news articles that features the ICO leads to an increase in investor recognition, and thus to a lower return compared to stocks with no media coverage.

281. See Howell et al., supra note 89, at 12 (discussing the practice of presales).

282. Id. (finding that forty-five percent of the sample had a presale); Benedetti & Kostovetsky, supra note 115, at 44 (finding that forty percent of the sample had a presale); Adhami et al., supra note 7, at 9 (finding that thirty-eight percent had a presale); Zetzsche et al., supra note 82, at 7 (finding that twenty-two percent of the sample had a presale, but suggesting that the actual number is higher, given the information asymmetry associated with ICOs); Fisch, supra note 16, at 12 (finding that sixty-five percent of the sample had a presale); Momtaz, Initial Coin Offerings, supra note 106, at 35 (finding that forty-four percent had a presale).

283. Howell et al., supra note 89, at 30.

284. Lyandres et al., supra note 9, at 21.

285. Lee et al., supra note 18, at 17, 19 (finding that 39.5 percent of successful ICOs included a presale, compared to 21.3 percent of failed ICOs; and that including a presale can boost the success likelihood by 15.2 percentage points (p<1%)).

286. See Lyandres et al., supra note 9, at 21 ("the presale indicator is strongly associated with the presence of institutional or sophisticated investors").

287. See generally Jiason Li & William Mann, Initial Coin Offerings and Platform Building (Oct. 1, 2018) (unpublished manuscript) (on file with author), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3088726 [https://perma.cc/L6SX-BR35] (archived Feb. 16, 2020) (presenting a theoretical model that rationalizes these results. They show that given the multistage nature of ICOs, and that investors are
it another way, presales are interpreted by later investors as evidence that earlier investors held favorable information, and thus trigger an information cascade. This interpretation is consistent both with the equity crowdfunding literature and with the IPO literature. Interestingly, Benedetti and Kostovetsky found that presales have become more popular over time, "with an average incidence of 1% for ICOs completed before July 1, 2017, 29% for the second half of 2017 ICOs, and 57% for 2018 ICOs," suggesting that issuers are learning from past experience.

Other studies, on the other hand, have found that presales are neither associated with success nor negatively related to ICO success. A possible explanation, as Amsden and Schweizer suggested, is that presales may indicate that a firm is insecure about the ICO. Another explanation is that, to attract sophisticated investors, firms need to offer high bonuses during presales and as discussed above, high bonuses may lead to pump-and-dump, as well as Ponzi schemes. Empirical evidence suggests that investors are aware of these risks, so that offering bonuses—particularly high ones—predicts failure and lower first-day returns on the secondary market. A possible explanation for the latter result, as Lee et al. suggested, is that rational secondary market investors aware of the heterogeneously informed, investors with a relatively high signal would join early and those with a relatively weak signal would "follow the crowd").

288. See, e.g., Lee et al., supra note 18, at 5; Howell et al., supra note 89, at 30.
289. Lyandres et al., supra note 9, at 20. In the context of equity crowdfunding, see generally Lars Hornuf & Armin Schwienbacher, Market Mechanisms and Funding Dynamics in Equity Crowdfunding, 50 J. CORP. FIN. 556 (2018); In the IPO context, see Ivo Welch, Sequential Sales, Learning, and Cascades, 47 J. FINANCE 695 (1992) (develops a model according to which, later potential investors can learn from the purchasing decisions of earlier investors).
290. Benedetti & Kostovetsky, supra note 115, at 17.
291. See id. ("pre-ICOs do not seem to be correlated with success").
292. Amsden & Schweizer, supra note 188, at 33; Momtaz, Initial Coin Offerings, supra note 106.
293. Amsden & Schweizer, supra note 188, at 18.
294. See Li & Mann, supra note 287, at 26; Amsden & Schweizer, supra note 188, at 39 (discussing effects of bonuses); Bourveau et al., supra note 118, at 40.
295. Lee et al., supra note 18, at 3, 17 (find that high bonuses (>20%) are more prevalent in failed ICOs (p<0.1); that ICOs offering large bonuses are 10.9 percentage points less likely to succeed; that high bonuses negatively predict the total amount raised in an ICO, are negatively correlated with first-day sales volumes, and have a significantly lower first-day return than that for token sales without large bonuses). Bourveau et al., supra note 118, at 44 (finding that offering bonuses and bounties is negatively associated with the amount raised, and that this is positively associated with extremely negative returns in the long term (less than or equal to -75%). On the other hand, Amsden & Schweizer, supra note 188, at 38, find that the offering of presale bonuses is not significantly correlated with either the probability of the token's tradability or the amount raised.
bonuses would demand a lower price, closer to the tokens’ intrinsic value.296

\section*{C. Token Sale Design Choices}

\subsection*{1. Blockchain and Token Types}

\textit{Type of blockchain:} ICOs can either develop their own blockchain or launch their tokens on an existing platform, such as Ethereum or Bitcoin. Most ICOs are currently launched on Ethereum and use the standardized smart contract ERC20,297 a “token standard [that] describes the functions and events that an Ethereum token contract has to implement.”298 A possible reason for the popularity of this protocol is that it ensures the interoperability of different tokens. Tokens issued under this protocol can interact with smart contracts on the Ethereum platform, and with every wallet that supports Ethereum-based tokens.299 Another reason may be that ERC20 simplifies the process of issuing a new token, enabling anyone to issue a new token using less than one hundred lines of code.300

\textit{Investors value the Ethereum standard:} empirical studies examined the association between the type of blockchain and ICO success and found that investors value the Ethereum standard. Momtaz found that using ERC20 is positively related to the amount raised and with first-day return.301 Fisch found that launching an ICO on Ethereum is positively associated with the amount raised.302 Similarly, Amsden and Schweizer found that launching an ICO on Ethereum is positively correlated with the probability of having tradable tokens after ICO completion.303 However, they also found it is negatively correlated with the amount raised.304 A possible reason for the latter result is that large ICOs may prefer to create their own blockchain due to limitations in the functionality of Ethereum.305 In line with this interpretation, Howell \textit{et al.} found that creating a new

296 Lee \textit{et al.}, \textit{supra} note 18, at 26.
297 Adhami \textit{et al.}, \textit{supra} note 7, at 6 (finding that fifty-six percent of the sample use Ethereum); Amsden \& Schweizer, \textit{supra} note 188, at 32 (finding that over eighty-five percent of the sample use Ethereum); EY 2017, \textit{supra} note 114, at 19 (finding that seventy-seven percent of the sample use Ethereum); Fisch, \textit{supra} note 16, at 12 (finding that seventy-eight percent of the sample use Ethereum); Howell \textit{et al.}, \textit{supra} note 89, at 23 (finding that seventy-four percent of the sample use ERC20); Lee \textit{et al.}, \textit{supra} note 18, at 13 (finding that seventy-eight percent of the sample use Ethereum); Rhue, \textit{supra} note 9, at 19 (finding that nearly eighty-five percent of the sample use Ethereum).
298 ERC20, \textit{supra} note 68.
299 Robinson, \textit{supra} note 20, at 958 n.349.
300 See Rohr \& Write, \textit{supra} note 26, at 474 (describing the benefits of ECR20).
301 Momtaz, Initial Coin Offerings, \textit{supra} note 106, at 34.
302 Fisch, \textit{supra} note 16, at 14.
303 Amsden \& Schweizer, \textit{supra} note 188, at 33.
304 \textit{Id.} at 37.
305 \textit{Id.}
blockchain protocol is among the strongest predictors of liquidity, and that it is also positively associated with higher returns on the secondary market.306 Their suggested explanation is that ventures that launch a token on a native blockchain ensure that the token value is correlated, at least in theory, with the platform value.307 Another possible explanation is that creating a new protocol signals high technical expertise.

\textit{Type of token}: A token may represent a variety of rights, ranging from financial to consumptive rights. Empirical studies show that the most common type is utility token.308 Empirical studies also examine whether token type affects its success probability. Adhami \textit{et al.} hypothesized that the rights attached to the token matter, because they contribute to the question of whether the token qualifies as a security.309 They found empirical evidence that partly supports their hypothesis, showing that only the right to access a service (utility token) and profits rights are associated with success (significant at 99 percent and 95 percent, respectively).310 Howell \textit{et al.} found that tokens that convey utility-like rights are more likely to succeed.311 Fisch, however, analyzed the relation between utility token—a dummy variable measured manually based on the ICO’s white paper—and ICO success, and found no significant difference between security and utility tokens with regard to the amount raised.312

2. Economic Variables

\textit{Fraction of tokens for sale}: As in IPOs, a venture that launches an ICO can decide how many tokens would be sold. Empirical studies found that the average fraction of tokens for sale in an ICO is between 54 percent and 61 percent,313 and that it is negatively and reliably

\begin{itemize}
\item306 Howell \textit{et al.}, \textit{supra} note 89, at 31.
\item307 See id.
\item308 See Adhami \textit{et al.}, \textit{supra} note 7, at 8 (finding that sixty-eight percent of tokens convey a right to access a service (utility token); 24.9 percent convey governance rights (such as voting in decision polls); and 26.1 percent convey profit rights); Fisch, \textit{supra} note 16, at 12 (finding that eighty-three percent of the sample are utility tokens and seventeen percent are security tokens); Howell \textit{et al.}, \textit{supra} note 89 (find that sixty-eight percent of tokens are utility tokens); Blaseg, \textit{supra} note 229, at 29 (find that seventy-one percent of tokens are utility tokens).
\item309 Adhami \textit{et al.}, \textit{supra} note 7, at 7.
\item310 \textit{Id.}, at 7.
\item311 Howell \textit{et al.}, \textit{supra} note 89, at 33.
\item312 Fisch, \textit{supra} note 16, at 14.
\item313 Benedetti & Kostovetsky, \textit{supra} note 115, at 25 (finding that the average percent of all tokens sold during the ICO is 60); Howell \textit{et al.}, \textit{supra} note 89, at 25 (finding that the average percent is fifty-four); Lee \textit{et al.}, \textit{supra} note 18, at 40 (fifty-seven percent among successful and sixty-one percent among failed ICO); Amsden & Schweizer, \textit{supra} note 188, at 32 (sixty percent); Lyandres \textit{et al.}, \textit{supra} note 9, at 15 (fifty-seven percent;
associated with the probability of ICO success and with the amount raised. These results suggest that a higher fraction of tokens owned by issuers signals that they are more committed to the project (have more "skin in the game"). This is in line with Vismara’s research (in the context of equity crowdfunding), which found that entrepreneurs who sell larger portions of their companies at listing are less likely to attract the interest of potential investors.

This result is also consistent with Richard Brealey’s et al. argument (in the context of IPOs) that the willingness of persons with inside information to invest in the project signals quality.

Soft cap: When launching a token sale, a venture must decide whether to include a soft cap requirement. A soft cap, as mentioned earlier, is the minimum amount of funds aimed at by the ICO. If an ICO fails to reach the soft cap requirement, funds are usually returned to investors. Therefore, a soft cap requirement reduces investor risk. Empirical studies found, however, that soft cap requirements are not very common. They also examined the association between including a soft cap requirement and determinants of ICO success and found contradictory results. Lee et al. found that the average (median) soft cap for successful ICOs is $6.8 ($2.7) million, similar to that set by unsuccessful ICOs, suggesting that having a soft cap does not affect ICO success. Similarly, Rhue and Blaseg found that it has no significant effect on ICO success. Bourveau et al. found that including a soft cap requirement is negatively and significantly associated with the amount raised and with successfully completing the fundraising; and Abe De Jong et al. found that the soft cap target in ten percent of the ICOs all tokens are offered to ICO investors; Fisch, supra note 16, at 11 (fifty-six percent).

314. See Lee et al., supra note 18, at 40; Amsden & Schweizer, supra note 188, at 32; Lyandres et al., supra note 9, at 15. On the other hand, however, De Jong et al., supra note 243; Fisch, supra note 16, at 11; and Howell et al., supra note 89, at 25 found that the association is not significant.

315. Silvio Vismara, Equity Retention and Social Network Theory in Equity Crowdfunding, 46 SMALL BUS. ECON. 579, 588 (2016).

317. See Lee et al., supra note 18, at 1.

318. See infra Part II.D.3.

319. Amsden & Schweizer, supra note 188, at 54 (finding that thirty-two percent of the sample specify a soft cap requirement); Bourveau et al., supra note 118, at 18 (finding that thirty-nine percent of the sample specify a soft cap requirement).

320. Blaseg, supra note 229, at 31; Lee et al., supra note 18, at 16; Rhue, supra note 9.

321. Lee et al., supra note 18, at 16.

322. Blaseg, supra note 229, at 31; Rhue, supra note 9.

323. Bourveau et al., supra note 135, at 44.
amount is negatively associated with success. On the other hand, Amsden and Schweizer, Howell et al., and Fisch found that a soft cap requirement is positively associated with the amount raised.

Hard cap: Similarly, a venture may decide whether to include a hard or maximum cap requirement. Empirical studies found that the average hard cap ranges from $43–$93 million, but the distribution is highly skewed with a median value of $20–$23 million. Studies also suggest that ICOs tend to set high hard caps that they are unlikely to reach, and that a higher hard cap is negatively associated with ICO success. These results are in line with the theoretical and empirical IPO literature, according to which large offerings send a negative signal to the market. Similarly, in the context of reward-based crowdfunding, Ethan Mollick found that the funding goal is negatively associated with success. Conversely, in the case of equity crowdfunding, Anna Lukkarinen et al. found that the fundraising target is positively associated with the number of investors, but insignificantly associated with the amount raised. They suggest that the difference between reward-based and equity crowdfunding is rational as reward-based crowdfunding investors are interested in obtaining a reward rather than a stake in the company. It would be interesting to see whether such a difference exists between utility and security token sales.

324. De Jong et al., supra note 243, at 17.
325. Amsden & Schweizer, supra note 213, at 37; Howell et al., supra note 89; Fisch, supra note 16.
326. See Benedetti & Kostovetsky, supra note 115, at 16 (finding that the average hard cap is approximately $43 million (median=$23 million)); Lee et al., supra note 18, at 16 (finding that the average hard cap for successful ICOs is approximately $88 million (median=$22 million)); Lyandres et al., supra note 9, at 15 (finding the mean hard cap is $70 million, while in more than fifty percent of the ICOs, it is larger than $20 million, highlighting that the distribution is skewed).
327. See Lee et al., supra note 18, at 8 (finding that only 12.2% of ICOs hit their hard cap); Lyandres et al., supra note 9, at 16 (finding that ICOs are able to raise on average forty-four percent of their hard cap, and only twenty-six percent of ICOs reach the hard cap).
328. De Jong et al., supra note 243, at 17; Lyandres et al., supra note 9. But see Lee et al., supra note 18, at 16 (finding that successful ICOs have on average a much higher hard cap, but the median hard cap is very similar).
331. Anna Lukkarinen et al., Success Drivers of Online Equity Crowdfunding Campaigns, 87 DECISION SUPPORT SYS. 26, 35 (2016).
332. Id.
Currency accepted: The token sale is usually made through the project website, wherein investors are required to transfer money (either crypto or fiat currencies) to a smart contract address, which then transfers a predetermined amount of tokens to the sender. Empirical studies found that ICOs accept on average two types of currencies. Lee et al. found that ICOs that accept multiple currencies are significantly more likely to succeed. Considering the volatile nature of cryptocurrencies, this result highlights the importance of expanding payment options. Amsden and Schweizer offered another interpretation, according to which, accepting multiple cryptocurrencies requires significant technical expertise, and thus signals quality. Unsurprisingly, most ICOs accept Ether, and accepting Ether has a stronger positive relation with liquidity and volatility compared to accepting bitcoin. ICOs sometimes accept fiat currencies, mainly USD. Some studies found that accepting fiat currencies is correlated with a higher market cap and amount raised, and negatively associated with long-term failure (i.e., being delisted from exchanges). A possible interpretation for these results is that ICOs that accept fiat currencies reduce investors' entry barriers. Conversely, Amsden and Schweizer found that accepting fiat currencies is negatively related to the probability of having tradable tokens. They suggest a twofold

333. See infra Part II.D.1.
334. Amsden & Schweizer, supra note 188, at 54 (finding that on average an ICO accepts 1.6 different cryptocurrencies during the funding); Howell et al., supra note 89, at 25.
335. Lee et al., supra note 18, at 3 (finding that (1) ICOs that accepted multiple currencies were more likely to succeed (p<10%), compared to ICOs that accepted just one currency; (2) and that accepting multiple currencies is significantly (p<1%) and positively associated with higher gross proceeds). But see Blaseg, supra note 229, at 31 (finding that the number of accepted cryptocurrencies do not affect success); De Jong et al., supra note 243, at 30 (finding that the number of accepted currencies does not affect success).
336. Note that they refer to cryptocurrencies and not just currencies. See Amsden & Schweizer, supra note 188, at 21.
337. Howell et al., supra note 89, at 25 (finding that only sixty-six percent of ICOs accept Ether, and that accepting Ether has a stronger positive relation with liquidity compared to accepting bitcoin); Rhue, supra note 9, at 14 (finding that ninety-four percent of ICOs accept Ether, thirty-six percent accept bitcoin, and eleven percent accept USD. Interestingly, she also finds that accepting bitcoin and Ether is positively correlated with the amount raised, with the relation with the bitcoin being significant (p<5%) and with Ether insignificant).
338. De Jong et al., supra note 243, at 17 (found that accepting fiat currencies positively affect ICO success, but the coefficient is significant only in certain specifications); Momtaz, Initial Coin Offerings, supra note 106 (found that accepting fiat currencies is positively associated with gross proceeds and negatively with the probability of being delisted); Rhue, supra note 9, at 20 (found that accepting USD is positively associated with market cap (log-transformed market capitalization estimated from the price on March 31, 2018)).
340. Amsden & Schweizer, supra note 188, at 34.
explanation for this result. First, accepting fiat currencies may signal issuers' lack of confidence to complete the ICO by crypto investors only.341 Second, it may expose the ICO to regulatory interventions, and therefore increase the uncertainty around the project.342 In line with this interpretation, Momtaz found that ICOs that accept fiat currencies go public on average 389 days later than ICOs that do not; he suggested that in the early days, cryptocurrencies were not considered an asset in most jurisdictions, and thus the regulatory effort associated with accepting cryptocurrencies was less time consuming.343

Token supply control: Unlike stock supply, token supply is coded.344 Therefore, unless specific code restrictions are applied, issuers can control token supply, and dilute the value of a token through new issuance.345 Christian Catalini and Joshua S. Gans theorized that, in order to maximize the amount raised in an ICO, the growth rate in token supply between subsequent periods should be zero (i.e., ICOs should have a predetermined token supply).346 Consistent with this theoretical model, Howell \textit{et al.} found that the ability to create future tokens is negatively correlated with the amount raised.347 However, Cohney \textit{et al.} found the over 20 percent of ICOs that made promises regarding token supply in their sample of the top fifty ICOs of 2017 by market capitalization failed to reflect these promises in the actual code.348

Token price and supply: A venture can freely determine token supply, as well as the nominal price of each token. These decisions are arbitrary as the venture can manipulate the nominal price by altering the token supply, and they should not affect the overall market value of the venture.349 Nevertheless, empirical evidence suggests that these factors play an important role in influencing the behavior of ICO investors, with token supply being positively associated with ICO success and token nominal price being negatively associated with ICO

\begin{itemize}
\item 341 Id. at 32–33.
\item 342 Id.
\item 343 Momtaz, Initial Coin Offerings, supra note 106, at 22.
\item 344 Cohney, \textit{supra} note 26, at 613 ("Cryptoassets are . . . created, limited, and used up according to code").
\item 345 Id.
\item 346 Catalini & Gans, \textit{supra} note 104, at 13.
\item 347 Howell \textit{et al.}, \textit{supra} note 89, at 31–32.
\item 348 Cohney \textit{et al.}, \textit{supra} note 26, at 29.
\item 349 For example, a venture can freely decide whether to issue ten tokens with a nominal price of ten or one-hundred tokens with a nominal price of one. See Malcolm Baker, Robin Greenwood & Jeffrey Wurgler, \textit{Catering through Nominal Share Prices}, 64 J. FINANCE 2559, 2559 (2009) ("A firm's board of directors may choose to split to manage the nominal share price and number of shares outstanding but cannot change its overall market value through these means"); Justin Birru & Baolian Wang, \textit{Nominal Price Illusion}, 119 J. FIN. ECON. 578, 578 (2016) ("The level of a firm's stock price is arbitrary as it can be manipulated by the firm via altering the number of shares outstanding").
\end{itemize}
success.350 A possible explanation for these results is that ICO investors suffer from a nominal price illusion (i.e., that investors overestimate the growth potential of low- compared to high-priced tokens).351 This is in line with the IPO literature, according to which investors place higher valuations on low-priced shares, and therefore managers respond by supplying shares at lower price levels.352 Alternatively, these results may suggest that investors compare tokens to bitcoin, and hence buy a high quantity of tokens, hoping that they will reach a value similar to bitcoin.353

\textit{Lock-up mechanism:} A venture must decide whether early contributors and founders would be required to commit to a lock-up period, during which they would be prevented from selling their tokens. The lock-up mechanism is designed to protect investors against the threat of desertion.354 Consistent with the IPO literature,355 empirical studies found that reporting on having a lock-up mechanism is positively correlated with ICO success, suggesting that lock-up is a signal of quality.356 Therefore, ventures have an incentive to implement such a mechanism. That said, Cohney \textit{et al.} found that, in practice, many ICOs make promises regarding lock-up mechanisms but fail to reflect them in the actual code.357 They compared the promises made in the disclosure documents with the actual functionality of the digital tokens for the top fifty ICOs that raised the most capital in 2017, and found that of the thirty-seven ICOs that promised a lock-up mechanism, 78 percent did not code it.358 These results highlight the information asymmetry associated with ICOs and suggest that issuers exploit it.

\textit{Country restrictions:} The token sale operates as a “worldwide crowdfunding event,”359 but due to regulatory concerns, ICOs may decide to exclude residents from certain countries. A recent empirical study found that ICOs tend to exclude residents mainly from China and the United States.360 Empirical studies also analyze the relation between country restrictions and determinants of ICO success. \textit{Lee et al.}...
al. found that restricted sales in certain countries are less likely to succeed.361 Similarly, Momtaz found that the number of country restrictions is positively associated with money on the table (an additional restriction associated with an increase by $0.76 million).362 This finding suggests that firms that choose to reduce the set of potential investors need to offer higher incentives for the remaining. However, he also found that ICOs that restrict countries are less likely to fail (to be delisted).363 A possible reason for this is that by preventing certain countries from participating the firm reduces the risk of regulatory action.364

Specifically, Bourveau et al. and Howell et al. analyze the influence of restricting US investors.365 Bourveau et al. found that ICOs that restrict US investors from participating are more likely to be successfully completed and to raise more capital.366 In line with Momtaz’s interpretation, they suggest that this may reduce the risk of future U.S. Securities and Exchange Commission (SEC) regulation and intervention, thereby increasing participation.367 On the other hand, Howell et al. found that restricting US investors is unrelated to success (higher liquidity and volatility).368

Preregistering: The decentralized nature of cryptocurrencies, along with their anonymity, increase the risk of money laundering and terrorism financing,369 and hence know-your-customer (KYC) policies are necessary for ICOs.370 However, KYC policies are usually not mandatory procedures. Empirical studies analyzed the association between adopting KYC policies and determinants of ICO success and found contradictory results. Lee et al. found evidence for a negative influence of adopting KYC policies, both on successfully completing the fundraising and on long-term returns.371 They suggested that this finding is not unexpected, as such policies have the potential of reducing demand by investors who do not want to reveal their

361 Lee et al., supra note 18, at 393.
362 Momtaz, Initial Coin Offerings, supra note 106, at 21.
363 Id.
364 Id. at 22.
365 Bourveau et al., supra note 118, at 44; Howell et al., supra note 89.
366 Bourveau et al., supra note 118, at 44.
367 Id.
368 Howell et al., supra note 89, at 30.
370 See Lyandres et al., supra note 9, at 15 (finding that forty-nine percent of ICOs feature a KYC procedure and that thirty percent of ICOs feature a whitelist); Rhue, supra note 9, at 14 (finding that forty-five percent of ICOs feature a KYC procedure).
371 Lee et al., supra note 18, at 40.
identity.372 Considering the cyber risks associated with the crypto market,373 it seems reasonable that investors hesitate to enter sensitive personal data. On the other hand, Lyandres \textit{et al.} and Burns and Moro found that pre-ICO registration—whitelist or KYC policy—is positively related to the amount raised.374 These results may suggest that adopting a KYC policy signals legitimacy.375 Interestingly, Momtaz documented a negative and significant relation between money left of the table and adopting of KYC policies.376 He suggested that this result is consistent with information eliciting theories in IPOs, according to which entrepreneurs get to know their potential investors during the book-building period and can thus price their tokens more accurately.377

\textbf{D. Token Sale Duration}

The average duration of an ICO is from twenty-five to forty days.378 Empirical studies found that the duration of an ICO is negatively related to success. Lee \textit{et al.} found that successful ICOs took an average of thirty days to complete, compared to 37.8 days for failed fundraisers (the difference is significant at the 1 percent level).379 Momtaz and Fisch found that the duration of an ICO is negatively associated with the amount raised.380 Similarly, De Jong \textit{et al.} found the ICO duration is negatively associated with token tradability and the amount raised;381 and Blaseg found that the announced duration of the ICO is positively and significantly associated with success.382 These results are in line with the crowdfunding literature. In the context of reward-based crowdfunding, Mollick found that the duration of crowdfunding is negatively associated with success and suggests that a longer duration may signal lack of confidence in the project.383

\begin{footnotesize}
\begin{itemize}
 \item 372 Id. at 27.
 \item 373 EY 2017, \textit{supra} note 114, at 32.
 \item 374 Burns & Moro, \textit{supra} note 243; Lyandres \textit{et al.}, \textit{supra} note 9, at 22.
 \item 375 Burns & Moro, \textit{supra} note 243, at 25.
 \item 376 Momtaz, Initial Coin Offerings, \textit{supra} note 106, at 21.
 \item 377 Id.
 \item 378 Adhami \textit{et al.}, \textit{supra} note 7, at 7 (finding that the average duration is twenty-seven days, but that it is heterogeneous with "some ICOs close in a few days, whereas other are open for some months"); Benedetti & Kostovetsky, \textit{supra} note 115, at 44 (finding that the average ICO lasts thirty-seven days with a median of thirty-one). They also find that this figure has recently been rising with an average of forty-one days for 2018 ICOs; Fisch, \textit{supra} note 16, at 11 (finding that the average duration is twenty-five days); Howell \textit{et al.}, \textit{supra} note 89, at 42 (finding that the average duration of an ICO is forty days).
 \item 379 Lee \textit{et al.}, \textit{supra} note 18, at 18.
 \item 380 Fisch, \textit{supra} note 16, at 14; Momtaz, Initial Coin Offerings, \textit{supra} note 106, at 4, 20.
 \item 381 De Jong \textit{et al.}, \textit{supra} note 243, at 30–31.
 \item 382 Blaseg, \textit{supra} note 229, at 20.
 \item 383 Mollick, \textit{supra} note 330, at 8.
\end{itemize}
\end{footnotesize}
Similarly, in the context of equity crowdfunding, Lukkarinen et al. found that crowdfunding duration is negatively associated with the number of investors (which is a proxy of campaign success) but not related to the amount raised. They suggest that shorter durations may encourage prospective investors to act fast.

E. Post-ICO

1. Listing

After the token sale ends, ICOs generally list their tokens in crypto exchanges, and the issued tokens are then traded on the secondary market. Listing is an important indicator of ICO success, as it provides the main source of liquidity. In particular, listing is important for usage tokens, where a user must hold a token in order to access a platform. Therefore, some empirical studies use a listing as a proxy of ICO success and a delisting as a proxy of failure. Empirical studies found that the time from ICO completion to listing is highly skewed, with some ICOs being listed during the token sales and others over a year after ICO completion. The average ranges from 18.5–93 days.

Lyandres et al. found that a token is traded on average on five different exchanges, and that the number of exchanges is positively associated with success. This suggests that exchanges are willing to trade tokens of successful ICOs and that successful ICOs are willing to pay listing fees. They also found that larger ICOs are more likely to be listed, which makes sense, as listing is costly.

384. Lukkarinen et al., supra note 331, at 35.
385. Id. at 35.
387. Amsden & Schweizer, supra note 188, at 14.
388. Id. at 13–14; Lyandres et al., supra note 9, at 19.
389. Lyandres et al., supra note 9, at 19; Momtaz, Initial Coin Offerings, supra note 106, at 21.
390. Benedetti & Kostovetsky, supra note 115, at 19 (finding that the average (median) time is 31 (16) days and that some ICOs were listed prior to the end of the ICO); Lee et al., supra note 18, at 25 (finding that the average time from ICO completion to listing is 18.5 days); Momtaz, Initial Coin Offerings, supra note 106, at 3 (average (median) time of 93 (42) days).
391. Lyandres et al., supra note 9, at 16, 23.
392. Id. at 22, 27.
2. Underpricing

Underpricing is a phenomenon whereby the price of an asset is on average lower than its issuance price. This phenomenon has been observed by many researchers in the context of IPOs, and various explanations have been offered for it. Some studies suggested that information asymmetry between the issuer and potential investors can explain IPO underpricing, at least in part. Other studies theorized that the information asymmetry between the issuer firm and the underwriter can explain this phenomenon. Some scholars also suggested that firms intentionally underprice their stock. For example, Rajesh K. Aggarwala et al. argued that managers strategically underprice their stocks in order to generate a higher price at the lock-up expiration, and Ivo Welch argued that high-quality firms underprice their stocks to obtain a higher price at a seasoned offering.

Empirical studies found significant evidence of underpricing in ICOs, and in a larger degree than compared to IPOs. Various theoretical explanations were offered for this phenomenon in the context of ICOs. Momtaz, for example, argued that ICOs have an incentive to underprice their token to generate market liquidity, which is an important signal for investors. This argument is consistent with Lyandres’s et al. finding that liquidity is increasing in ICO underpricing and with Howell et al. who suggested that in the absence of measures of commercial success, liquidity is a major signal of ICO quality from early investors’ perspective. Momtaz also argued that ICOs with a native token have an incentive to underprice their token to attract a large user base, as the value of the token is partially determined by network size. Cong et al. developed a theoretical

394. See Kevin Rock, Why New Issues are Underpriced, 15 J. FIN. ECON. 187, 187 (1986) (finding that information asymmetry can explain IPO underpricing). See also Felix, supra note 393, at 7–10 (provides a further review of IPO underpricing literature).
397. Id. at 134 .
399. See Table 4 in the Appendix.
401. Lyandres et al., supra note 9, at 6.
402. Howell et al., supra note 89, at 30 (they also find that liquidity is positively associated with the amount raised and with successfully completing the fundraising).
model that supports this argument, according to which when a platform has native token investors (users) join the platform not only to enjoy its utility but also to benefit from the rising token price as a result of the growing network size.404

Momtaz, Benedetti and Kostovetsky, Lyandres \textit{et al.} and Felix analyzed the determinants of ICO underpricing.405 Unsurprisingly, Benedetti and Kostovetsky and Felix found that presales have a significant negative influence on underpricing.406 This result is consistent with the argument of Howell \textit{et al.} and Lee \textit{et al.} that early investment rounds provide an indication of the demand for the token, thus helping determine an appropriate price for the launch of the ICO.407 Felix and Lyandres \textit{et al.} found that the issue size of an ICO is negatively and reliably associated with underpricing, suggesting that larger ICOs are associated with a lower degree of information asymmetry.408 Conversely, Momtaz found that issue size is positively associated with money left on the table.409 Momtaz also found that country restrictions are positively associated with money on the table, suggesting that higher incentives are required for the remaining potential investors.410 Interestingly, in contrast with IPOs, Chanson \textit{et al.} and Benedetti and Kostovetsky found no significant association between firm's age and underpricing.411

\section*{IV. INFORMATION ASYMMETRY}

This Part focuses on information asymmetry. It shows that a high degree of information asymmetry exists in ICOs, and then outlines three sources of informational asymmetries—the absence of standard disclosure requirements, investors' lack of fundamental technical knowledge, and projects' early stages of development during the offering.412 Subsequently, it discusses the role of signaling theory and rating websites in mitigating these asymmetries.

\begin{itemize}
 \item 404 Cong \textit{et al.}, \textit{supra} note 121, at 28–29.
 \item 405 Benedetti & Kostovetsky, \textit{supra} note 115, at 1; Felix, \textit{supra} note 393; Lyandres \textit{et al.}, \textit{supra} note 9; Momtaz, Initial Coin Offerings, \textit{supra} note 106, at 5.
 \item 406 Benedetti & Kostovetsky, \textit{supra} note 115, at 4; Felix, \textit{supra} note 393, at 29.
 \item 407 Howell \textit{et al.}, \textit{supra} note 89, at 12; Lee \textit{et al.}, \textit{supra} note 18, at 3.
 \item 408 Felix, \textit{supra} note 393, at 29; Lyandres \textit{et al.}, \textit{supra} note 9, at 27.
 \item 409 Momtaz, Initial Coin Offerings, \textit{supra} note 106, at 4.
 \item 410 Id. at 20.
 \item 411 See Benedetti & Kostovetsky, \textit{supra} note 115, at 5 (finding the reason for the insignificant relation might be the use of a weak proxy: Twitter account age).
 \item 412 These sources were initially identified at Fisch, \textit{supra} note 16, at 6. See also Moral Hazard, \textit{supra} note 11, at 6–7 (discussing four distinct origins of information asymmetries in token sales).
\end{itemize}
Information asymmetry is a condition associated with financial markets, wherein potential investors lack information required to assess the true quality of the financial product. Potentially, this may create a market for lemons, where high-quality companies will be deterred from entering the market. A growing body of literature has discussed information asymmetry in the context of IPOs, VC, and crowdfunding. In the context of IPOs, for example, “potential investors possess substantially inferior knowledge relative to the owner of the security.” While initiators have access to information regarding the company’s strategy and technology, potential investors have access to relatively limited information.

The analysis presented in this Article suggests that a high degree of information asymmetry exists in the context of ICOs; white papers tend to be poor and misleading, but nevertheless, the ICO fundraising success rate is considerably high. Below, the Article outlines three potential sources of this information asymmetry.

First, ICOs are not subject to standard disclosure requirements. While a company that launches an IPO faces disclosure and registration requirements imposed by the securities regulator, ICOs’ disclosure requirements are unclear and depend on their function as well as on the governing jurisdiction. As a result, there is uncertainty about what should be disclosed, and ventures typically publish white papers that tend to be poor and misleading.

Second, investors often lack fundamental technical knowledge required to assess the quality of the project. Most ICOs are blockchain-based ventures, and in order to understand their business models, technological expertise is required. Investors’ lack of technical knowledge is thus a major source of information asymmetry. In line with this, the analysis in Part III shows that while investors tend to be highly sensitive to the technical aspects of the project, and

413. Jensen & Meckling, supra note 11; Moral Hazard, supra note 11, at 6–7.
414. Akerlof, supra note 12, at 489–90.
416. See Gilson, supra note 14 (discussing information asymmetry in the context of venture capitalists).
417. Ahlers et al., supra note 15, at 6, 19.
418. Cohen & Dean, supra note 13, at 683–84.
419. Id.
420. The discussion here relies on Fisch, supra note 16, at 6; Moral Hazard, supra note 11, at 6–7.
422. Lee et al., supra note 18, at 7; OECD, supra note 108, at 26. For an overview of the top twenty-five ICO jurisdictions in market capitalizations and their comparative regulatory responses, see generally Kaal, supra note 158.
423. Adhami et al., supra note 7, at 10; Cohney et al., supra note 26, at 5 (finding mismatches between the underlying code and the promises disclosed in the white paper); Zetzsche et al., supra note 82, at 34.
425. Id.
specifically to source code disclosure, they are insensitive to mismatches between promises made in white papers and the actual code, and that the number of uncoded promises does not affect the amount raised. This implies that investors either do not review the source code or are unable to assess its quality.

Third, most ICOs are launched at a very early stage. A 2017 study found that most ICOs are in the idea stage, and their platforms/services are expected to be launched in a year or more after the ICO, and a follow-up study found that “about a year after raising money, only a small portion of ICO-funded start-ups have progressed towards working product offerings.” Given that most ICOs are launched at a very early stage, and lack track of records, unsophisticated investors are unable to make an informed investment decision. This is in contrast with IPOs, where a potential issuer will have to “demonstrate a proper (and stable) amount of revenues, which can only be achieved after a company has reached a certain level of maturity.” This is partially due to exchanges and investment banks’ (which act as underwriters) listing requirements, which have a tendency to select IPOs that have the potential to perform well after.

A. Reducing Information Asymmetry through Signaling—Are Investors Able to Distinguish Between High- and Low-Quality Firms?

Against that background, recent researchers have analyzed the role of signaling theory in reducing the information asymmetry associated with ICOs. The signaling theory originally developed in the context of labor markets and it examines how high-quality job candidates can distinguish themselves from low-quality candidates.

426. See infra Part III.B.
427. Cohney et al., supra note 26, at 29.
428. EY 2017, supra note 114, at 16.
430. Collomb et al., supra note 78, at 296–97.
431. Id.
432. See Fisch, supra note 16 (study examining the role of signaling ventures’ technological capabilities in ICOs).
433. See Michael Spence, Job Market Signaling, 87 Q.J. ECON. 355, 355–61 (1973) (outlining the signaling theory as it applies to labor markets). In the context of IPOs, see Trevis Certo et al., Signaling Firm Value Through Board Structure: An Investigation of Initial Public Offerings, 26 ENTREPRENEURSHIP: THEORY & PRAC. 33, 36 (2001) (explaining the application of signaling theory to the incentives a firm’s board of directors has at the IPO stage). In the context of crowdfunding, see Ahlers et al., supra note 15, at 956–57, 958–64 (describing how signaling theory works in crowdfunding ventures).
In the context of financial markets, signaling theory examines how high-quality ventures can distinguish themselves from low-quality firms by sending signals about venture's true quality.434 Given the high variation in ICOs' quality, high-quality ICOs are incentivized to send signals about the venture's true quality, so that potential investors will be able to distinguish between them and low-quality ICOs.435 The rest of this subpart examines how firms can signal quality in the context of ICOs.

First, ICOs may signal quality through voluntary disclosure. Past studies in the context of equity funding found that firms are incentivized to provide information voluntarily to reduce information asymmetry.436 The rationale here is that low-quality ventures might be deterred from providing information about the ICO, whereas high-quality ICOs might be willing to provide additional information. Therefore, providing more extensive information in the white paper may signal quality.437

Empirical studies analyzed whether ICOs can signal quality by providing more extensive information; however, results were inconsistent. While the majority of ICOs publish a white paper, most studies found that simply disclosing a white paper does not affect ICO success.438 However, empirical evidence suggests that proxies of white paper's quality (e.g., number of words, pages, and unique words) predict success, suggesting that investors value the quality of the

434 In order for the signals to be effective, they must be observable by potential investors and costly to imitate. See Brian L. Connelly et al., \textit{Signaling Theory: A Review and Assessment}, 37 J. MGMT. 39, 47-50 (2011) (listing several sources stating that the observability and costliness of signals are important for them to be successful).

435 See \textit{id.} at 40 (explaining the incentives signaling theory creates in general); Fisch, \textit{supra} note 16, at 11, 18 (briefly describing some of the disparities in ICOs and showing findings that demonstrate what signals ICOs may use to effectively indicate quality to investors).

436 See Feng et al., \textit{supra} note 221; see also Richard Frankelet al., \textit{Discretionary Disclosure and External Financing}, 70 ACCT. REV. 135, 136–37, 140–49 (1995) (divulging findings that show that firms make earnings forecasts as a tool to communicate with investors); Leone et al., \textit{supra} note 252, at 118–48 (examining the correlation between disclosure of proceeds usage and initial IPO returns, and finding that disclosure tends to help avoid underpricing).

437 However, to ensure that low-quality ICOs will be deterred from providing misleading information, they must face penalties in the event of fraudulent disclosure. See Patricia J. Hughes, \textit{Signalling by direct disclosure under asymmetric information}, 8 J. ACCT. & ECON. 119, 121–37 (1986) (making findings that demonstrate how having a penalty set for inaccurate disclosures should incentivize truthful disclosures); see also De Jong et al., \textit{supra} note 243, at 8 (stating, based on Hughes' findings, that low-quality ICOs are less likely to share information with investors when they may incur a penalty for that information being fraudulent).

438 See \textit{infra} Part III.B.1 (examining several studies about the effects of white paper disclosure).
information disclosed in white papers.\(^\text{439}\) In line with this, De Jong et al. found that ICOs with a higher transparency rating (i.e., that disclose more extensive information) according to ICOBench are more likely to succeed,\(^\text{440}\) and Bourveau et al. found that ICOs with informative white papers according to ICOBench are more likely to succeed.\(^\text{441}\)

However, when Bourveau et al. manually analyzed the association between disclosure practices (ICO team information, token allocation information, founder tokens vesting period, use of proceeds, white paper opacity, and white paper length) and ICO success they found no significant association, which may suggest that ICOBench disclosure indicators are not entirely accurate.\(^\text{442}\) This is also in line with the contradictory effect of disclosing information about the use of proceeds and token allocations. The lack of clear positive effect with regard to these indicators may suggest that investors do not fully assess the information disclosed in white papers. Therefore, the effect of providing more extensive information in white papers is not entirely clear.

Second, due to the complex technological nature of ICOs, some\(^\text{443}\) have argued that ICOs can signal quality through technological capabilities.\(^\text{444}\) In line with this argument, empirical evidence suggests that disclosing a technical white paper and the amount of technical language in the white paper predict successful fundraising.\(^\text{445}\) However, Feng et al. found that the amount of technical discussion in white papers predicts success only for high-quality ICOs.\(^\text{446}\) A possible

\(^\text{439}\) See id. (explaining data that demonstrates how the quality of information white papers disclose relate to the success of an ICO).

\(^\text{440}\) See De Jong et al., supra note 243, at 18 (concluding that higher ratings for ICOs correlate with stronger performance).

\(^\text{441}\) See Bourveau et al., supra note 118, at 32–33, 47–48, 54 (finding that (1) completed ICOs tend to have significantly higher ratings than failed ICOs; (2) rating is positively associated with the likelihood of completing an ICO; (3) higher ratings are strongly negatively associated with two measures of crash risk, extreme negative returns and negative return skewness; and (4) higher ratings are negatively associated with post-ICO illiquidity and return volatility).

\(^\text{442}\) See id. at 2, 18–20, 44 (finding no substantial correlation between ICO disclosure practices and the ultimate success of an ICO).

\(^\text{443}\) See, e.g., Feng et al., supra note 221, at 22–29 (reporting findings about the effect of the quality of blockchain technology an ICO uses on investors and the success of the ICO); Fisch, supra note 16, at 12–14, 18 (discussing findings regarding how various indicators of technological capabilities serve as effective signals to investors).

\(^\text{444}\) See Fisch, supra note 16, at 12–14, 18 (explaining the effectiveness of technical white papers as signals); Lyandres et al., supra note 9, at 19–20, 50 (showing and summarizing data demonstrating that white papers with more technical language are more effective for ICO success).

\(^\text{445}\) See Feng et al., supra note 221, at 5–6 (finding that white paper technical discussion increases the amount raised for ICOs with high blockchain ratings, but that the same does not hold true for those with low blockchain ratings).
interpretation for this is that projects are more likely to provide technical discussions in the white paper when they are in more advanced stages.446

Another important signal on that matter is ventures' source codes. Almost all the empirical studies analyzed in this Article found that disclosing a source code on GitHub prior to the ICO predicts success.447 Source code disclosure allows potential investors to reassess the technical validity of the project, and thus it is an important signal.448 Likewise, most empirical papers found that proxies of source code quality predict success, suggesting the quality of the source code is associated with the value of the ICO.449 However, it seems that investors are only sensitive to "surface" technical signals and are unable to assess the true quality of the code.450 While disclosing the source code and proxies of code quality, like being active on GitHub, predicts success, mismatches between the source code and promises made in the white paper do not affect fundraising success.451 This may suggest the investors review the source codes but are unable to evaluate their true quality, or, alternatively, it is possible that investors are relying on intermediaries, which only assess "surface" indicators regarding the quality of the code.

With respect to the use of blockchain technology, empirical evidence suggests that investors are able to distinguish between ICOs that leverage blockchain technology and ICOs that don't really need to use blockchain,452 and see the Ethereum standard as a valuable signal.

Third, due to the lack of legal protection to ICO investors, coupled with the large amount of fraudulent ICOs, ventures may signal quality by implementing practices intended to protect investors. Obviously, empirical papers found that ICOs that state that they will implement

446 See id.; Lyandres et al., supra note 9, at 12–13 (choosing to measure technical language in white papers on the thought that technical white papers come about from more developed ICO projects).

447 See infra Part II.B.2 (analyzing the results of studies on how source code disclosure affects ICO success); infra Table 2 in the Appendix (organizing the findings of several studies into categories based on how it determined certain variables affect ICO success).

448 See Adhami et al., supra note 7, at 7 (acknowledging the potential disclosing source code has for allowing potential investors to scrutinize an ICO).

449 See infra Part III.B.2 (listing various studies showing that certain indicative factors relating to source code quality correlate with ICO success).

450 See, e.g., Cohney et al., supra note 26, at 639–47 (finding that ICOs that made code promises in its white paper but did not actually include them in the code had similar fundraising outcomes to those that did); supra Part III.B.2 (noting that some investors seem to rely mostly on the promises about the source code in white papers as opposed to reading the actual code).

451 See Cohney et al., supra note 26, at 439–47 (listing the authors' findings that whether or not promises appeared in code did not affect ICO fundraising success); supra Part III.B.2 (describing the findings of Cohney et al., supra note 26).

452 Feng et al., supra note 221, at 25–26 (reporting findings about the differences in amounts raised that tend to show that investors can tell when an ICO uses blockchain and when others do not).
lockup mechanisms and restrict the ability to create future tokens are more likely to succeed. However, such statements were found to be false in certain cases. Surprisingly, the effect of including a soft cap is unclear. This result is surprising, because most ICOs implement an "all or nothing" mechanism, and hence the presence of a soft cap reduces investors' risks. Additionally, consistent with IPOs and crowdfunding, a higher fraction of tokens owned by issuers is associated with success, suggesting that it signals "skin in the game." Empirical studies also analyze the effect of adopting a KYC mechanism and came with conflicting results. This result is not entirely surprising; while KYC potentially may signal legitimacy, investors might be hesitant in providing private information, due to a large amount of cybersecurity incidents occurring in the blockchain industry.

In line with the contradictory results outlined here, empirical evidence suggests that investors are not entirely sensitive to disclosure about risk and regulation. Most ICOs do not specify the applicable law and jurisdiction, and the presence of such information has only a minor effect on ICO success. While these results are surprising, it is possible that ventures were unable to specify the applicable law and jurisdiction due to regulatory uncertainty. Additionally, Feng et al. found that most ICOs do not disclose information related to the project's risks and that such disclosure does not affect ICO success. Combined, these results suggest that investors are not entirely sensitive to risk and regulation related information.

453. See infra Part III.C.2 nn.387–88 (citing several sources reflecting how lockup mechanisms positively affect the success of an ICO).
454. See, e.g., Cohney et al., supra note 26, at 638–43 (reporting data showing that ICO projects that promise lockup in their white papers will frequently not actually encode it into the ICO).
455. See infra Part III.C.2 (describing several studies that reached contradictory conclusions about the effect of including a soft cap in an ICO).
456. See id. (stating how most ICOs return funds to investors if they fail to reach their soft caps).
457. See id. (looking at several studies and determining that investors react positively to token issuers owning a significant portion of the tokens in a project).
458. See id. (noting the various findings of several conflicting studies and the reasons results could come out either way).
459. See supra Part III.B.1. (pointing out that even though most ICOs don't disclose much, if any, applicable law or potential regulatory issues, most have been successful anyway).
460. See id. (noting the infrequency of these types of disclosures and what the continued success rate of ICOs may mean about how investors perceive that information).
461. See Feng et al., supra note 221, at 39, 41 (giving datasets showing that a majority of ICOs do not disclose risk information and that such nondisclosure is not an impediment to the ICO succeeding).
B. The Role of Rating Websites in Reducing Information Asymmetry

Considering the information asymmetry associated with ICOs, analysts play a vital intermediary role. The absence of traditional underwriters—who play a critical intermediary role in the IPO market—coupled with the complexity of this new technology, increase the demand for information. Analysts, who are typically equipped with in-depth knowledge about the industry, may screen ICOs' disclosures and provide evaluations that are more accessible to unsophisticated investors, for whom conducting due diligence on each ICO might be too costly. It also has been suggested that ICO analysts are "likely to be unbiased due to reputational concerns." Empirical studies have analyzed the association between analysts' rating and ICO success and found that analysts' rating from unofficial websites strongly and reliably predicts ICO success. Lee et al. found that the rating provided by ICOBench is positively associated with the amount of funds raised, successfully completing the ICO, quicker sale, and long-term returns on the secondary market. Bourveau et al. found similar results when analyzing the rating scores from ICOBench and ICORating, and Rhue found that ICO Drops' reputation and hype scores are positively and significantly associated with higher ROI, and that ICO reputation scores from Etherscan predict a higher market cap. Similarly, Momtaz found that the quality of the management team, as measured by ICOBench, is positively and significantly associated with market performance and higher gross proceeds. Additionally, Boreiko and Vidusso found that ICOBench and ICOHolder ratings predict success, but ICOBazaar and ICOMarks do not, suggesting inconsistency across different rating sites.

462. Lee et al., supra note 18, at 16.
463. Id. at 27.
464. Independent analysts' ratings seem to predict IPOs success, and thus it is not surprising that it predicts ICO success. See, e.g., Brad M. Barber et al., Comparing the Stock Recommendation Performance of Investment Banks and Independent Research Firms, 85 J. FIN. ECON. 490 (2007) (comparing the profitability of security recommendations issued by investment banks and independent research firms and finding that the buy recommendations of independent research firms outperform those of investment banks).
465. See Lee et al., supra note 18, at 3–5 (finding that higher ratings for an ICO have a positive correlation with the listed factors).
466. See Bourveau et al., supra note 118, at 30–33 (finding that higher ratings correlate positively with the rate of ICO success as well as positive long-term outcomes).
467. See Rhue, supra note 9, at 16, 22 (stating the results of the studies on the ICO Drops scores, which correlated with greater return on investment, and Etherscan scores, which correlated to higher market capitalization).
468. See Momtaz, Initial Coin Offerings, supra note 106, at 18–21, 24–25 (finding that management quality is a strong predictor of ICO success).
469. See Boreiko & Vidusso, supra note 204, at 19. These findings are consistent with Rhue, supra note 9, at 21–24 (noting the inconsistencies in the information reputation score systems provide to investors as well as their unreliability as predictors.
Additionally, they show that the frequency of being included in a rating platform predict success.470 David Florysiak and Alexander Schandlbauer found that ICOBench rating is positively and significantly predicts ICO success.471

While rating sites potentially may reduce information asymmetry, recent research suggests that they generally provide low-quality data and that it is not uncommon for fraudulent ICOs to appear in such websites, due to their business model, according to which issuers are paying to the rating sites in exchange for the rating (which also suggests that they are not independent).472 This is consistent with recent blog posts that have showed that ICO aggregators simply sell the rating scores (i.e., the number of stars that the “expert” analysts would give to the ICO) without conducting serious due diligence.473 If these accusations are true, this may indicate that the reputational concerns in the market are not strong enough, as some scholars have suggested.

Additionally, empirical studies suggest that their indicators are not entirely reliable. For example, Bourveau et al. found a strong relationship between an informative white paper, a dummy variable measured by ICOBench, and ICO success,474 but when they manually analyzed the association between disclosure practices (ICO team information, token allocation information, founder tokens vesting of ICO success) and Lyandres et al., supra note 9, at 19–23 (finding that several variables had differing effects on ICO success).

470. See Boreiko & Vidusso, supra note 204, at 8–9 (finding that the frequency of an ICO's inclusion on a rating platform has a positive correlation with fundraising success).

471. See Florysiak & Schandlbauer, supra note 142, at 29 (finding that there is a positive correlation between an ICO’s average rating and its statistical likelihood of success).

472. See Boreiko & Vidusso, supra note 204, at 5 (stating that it is not uncommon for ratings lists to include, among other things, data of poor quality and fraudulent ICOs, leading to the opinion that they are of dubious value to investors seeking reliable information).

473. See, e.g., Markus Hartmann, This Is How Easy It Is to Buy ICO Ratings — An Investigation, MEDIUM (June 14, 2018), medium.com/alethena/this-is-how-easy-it-is-to-buy-ico-ratings-an-investigation-13d07e987394 [https://perma.cc/9P7R-78XM] (archived Nov. 6, 2019) (reporting the results of an experiment that revealed ICOs could pay more money in order to receive higher ratings and visibility); Filip Poutintsev, Beware of ICO Bench!, HACKERNOON (May 29, 2018), https://hackernoon.com/beware-of-ico-bench-97addacfedc7 [https://perma.cc/YA6M-VUTT] (archived Nov. 5, 2019) (alleging that ICOBench's rating bot simply assigns ratings based on the promotional package an ICO buys, and that human ratings experts are easily bribed into giving higher ratings); see also Cohney et al., supra note 26, at 649 (acknowledging widespread reports of ICO ratings websites' practice of accepting payment for better ratings).

474. See Bourveau et al., supra note 118, at 19 (finding that white paper length (which indicates the amount of information in the white paper) has a strong positive relationship with variables indicative of ICO success).
period, use of proceeds, white paper opacity, and white paper length) and ICO success, they found no significant association.475 This is consistent with Florysiak and Schandlbauer's findings that expert analysts rely on "easy-to-extract publicly available information such as team size or the number of social media channels," and hence their rating is uninformative.476

Most importantly, empirical studies suggest that rating sites very often do not provide any information regarding the technical aspects of the project, or more specifically, regarding the source code of the project.477 Cohney \textit{et al.}, for example, found that only one of the top five rating sites by Alexa ranking posts code information.478 Similarly, Markus Hartmann \textit{et al.} have analyzed twenty-eight websites that offered ICO evaluations and found that "technical information regarding the underlying blockchain infrastructure that a startup project builds upon is not covered by any of the identified evaluation websites."479 As the source code, the \textit{de facto} business model of the project, plays a vital role in the ICO mechanism, we would expect a different result.

Last, on top of the drawbacks outlined above, most rating sites are not transparent with regard to their evaluation process. Hartmann \textit{et al.} found that only six of the twenty-eight websites that offered ICO evaluations provided information about their evaluation process.480 These findings are particularly important due to the accusations that ICO rating sites sell their rating scores without conducting due diligence.

\textbf{C. Moral Hazard}

Along with the severe information asymmetry, recent studies have observed moral hazard in ICOs. Moral hazard is a condition associated with information asymmetry where "transacting parties share risk, and one party bears the cost of risk taken by another party."481 This condition has been previously observed in the context of

475 See \textit{id.} at 19–20, 44 (demonstrating that the listed variables lack any strong association with predicting ICO success).

476 Florysiak & Schandlbauer, \textit{supra} note 142, at 6 n.3.

477 See Cohney \textit{et al.}, \textit{supra} note 26, at 642–43 (assessing the rate at which ratings websites post information about an ICO's source code, as well as looking at its prevalence in writings regarding retail valuation); Felix Hartmann \textit{et al.}, \textit{Evaluation of Initial Cryptoasset Offerings: The State of the Practice}, 1 \textit{2018 INTL. WORKSHOP ON BLOCKCHAIN ORIENTED SOFTWARE ENGINEERING} 33, 36 (2018) (analyzing the prevalence of technical information within ICOs' disclosures).

478 Cohney \textit{et al.}, \textit{supra} note 26, at 642–43.

479 Hartmann \textit{et al.}, \textit{supra} note 477, at 36.

480 \textit{Id.} at 37.

481 See Moral Hazard, \textit{supra} note 11, at 11 (defining moral hazard).
In IPOs, moral hazard occurs when founders attract private or public capital and face a conflict of interests: on the one hand, they are interested in acquiring growth capital in the long-term, but on the other hand they are interested in an exit strategy in the short term. Hurt argues that "the sheer amount of personal wealth that could be manipulated from an IPO is very tempting and may take priority over raising the most capital for the long-term goals of the company."

In the context of ICO, moral hazard exists in a way that ventures are incentivized to implement an opportunistic behavior and exploit the outlined informational asymmetries to signal quality during the ICO, thus raising more funds, but having lower returns on the long-term. Cohney et al., for example, found that issuers exploit investors' lack of technological expertise, showing that of the thirty-seven ICOs that promised a lock-up mechanism, 78 percent didn't code it; and of the thirty-two ICOs that promised supply restrictions, only 76 percent coded it. However, they also found that the information asymmetry decreases over time and investors are learning about the true quality of the source code. This suggests that opportunistic behavior has a positive effect on ICO success—as previously discussed, disclosure about lock-up mechanisms and token supply restrictions are associated with ICO success—but negative long-term consequences. Similarly, empirical evidence shows that issuers tend to exaggerate information disclosed in white papers, and that exaggerating information in white papers is associated with raising more funds in less time. However, exaggerating information was also found to be associated with lower market returns and with a higher initial price volatility that decreases over time.

Given the informational asymmetries associated with the market and the potential benefit of exploiting these informational asymmetries, issuers are facing a dilemma: on the one hand, an opportunistic behavior has negative long-term consequences, but, on

483. See id. at 721–22 (describing the potential moral hazard issues that can arise between founders and IPO issuers).
484. Id at 722.
485. See Cohney et al., supra note 26 at 636–38 (analyzing the results of audits of tokens promising either lock-up mechanisms or supply restrictions).
486. See id. at 655–56 (noting that the involvement of "smart money" actors in the ICO market can help alleviate information asymmetry issues by paying attention to the technical side of source code disclosures and making sure issuers follow through on promises when they fail to code them).
487. See Moral Hazard, supra note 11, at 29–30, 34 (reporting the effects of white paper exaggeration on the above-mentioned outcomes).
the other hand, it has a positive effect on ICO success.488 The amount raised in an ICO is particularly important because of network effect and because early liquidity is an important signal for investors in the absence of measures of commercial success.489 Therefore, it is possible that resisting opportunistic behavior from issuers' perspective might be inefficient (i.e., that low-quality ICOs with misleading and exaggerated information disclosed in white papers may outperform high-quality ICOs that resist opportunistic behavior).490

V. POLICY IMPLICATIONS AND CONCLUDING REMARKS

The previous Parts outlined three sources of informational asymmetries and showed that signaling theory and rating websites are not entirely effective in mitigating these asymmetries. These findings suggest that ICO investors are not entirely rational, and that we cannot fully rely on the competitive forces of an economy in this case. Therefore, the Article argues that regulators should address the sources of informational asymmetries discussed in this Article—which are a source of investors irrationality—by adopting mandatory disclosure provisions. Against that background, this Part discusses the question of how regulators can mitigate the information asymmetry associated with the market by imposing specific disclosure requirements. More specifically, it focuses on tokens that are de facto securities and examines how regulators can adjust the prospectus requirements to the unique characteristics of ICOs.

The traditional IPO disclosure requirements are not well suited for ICOs for a threefold reason.491 First, the costs associated with an IPO prospectus are high relative to the total capital raised in ICO and may thus constitute a barrier to market development.492 The analysis in Part III suggests that the funds raised range from $13 million to $16 million, which is typically higher than the amount of funds raised in a traditional crowdfunding, but lower than the amount raised in an IPO. Therefore, ICOs generally do not fall within the current exemptions in securities regulation, and have to spend a relatively large amount of

488 Id. at 36.

489 See Howell et al., supra note 89, at 25 ("From the perspective of an early stage investor, liquidity is a central benefit of ICOs relative to conventional financing instruments."); Momtaz, Initial Coin Offerings, supra note 106, at 14 (recognizing the importance of early liquidity as an incentive for early investors, which subsequently bolsters network effects).

490 Moral Hazard, supra note 11, at 36.

491 The discussion here relies on Lars Klöhn et al., Initial Coin Offerings (ICOs) Economics and Regulation 35-38 (Nov. 26, 2018) (unpublished manuscript) (on file with Soc. Sci. Research Network) (assessing and rejecting the arguments against applying IPO prospectus requirements to ICOs).

492 See id. at 35–36 (discussing why prospectus costs would not be prohibitive for most ICOs).
funds in an early stage to comply with the prospectus requirements.493 It should be noted, however, that the majority of ICOs conduct presales and can use the capital raised during these rounds to cover these costs, at least partially.

Second, ICO investors will not benefit from the prospectus as much as IPO investors do. To begin with, most ICOs are launched at the idea stage, and hence can provide only a little amount of useful information.494 Additionally, ICO investors are not entirely rational. As shown in Parts III–IV, disclosure requirements intended to protect investors that predict success in IPOs—such as information about the use of proceeds and about the risk and regulation associated with the project—do not predict success in ICOs (results are mixed). Finally, some of the information required under the prospectus rules is irrelevant in the assessment of ICOs, due to their unique technological nature.

Third, the prospectus requirement “is based on the idea that professional investors read the prospectus, value the security on that basis and influence the offering price through the book building process.”495 This rationale, however, does not apply to ICOs, in which the tokens are generally offered at a fixed price.496

Combined, the arguments outlined above suggest an incompatibility between ICO and IPO prospectus requirements; the costs associated with an IPO prospectus are high relative to the total capital raised in ICO (and potentially may pose a barrier to market development), and the effectiveness of the prospectus requirement in mitigating information asymmetries is low, compared to the case of IPOs. These arguments, however, are not necessarily justifying an exemption from the prospectus requirement. As shown in Parts III–IV, the competitive forces of an economy are not well-suited to address the market inefficiencies in the case of ICOs. Instead, the Article suggests that the prospectus requirements will be adjusted to better fit the unique characteristics of ICOs and proposes four specific disclosure requirements that should be imposed.497

493 Against that background, Rohr & Wright argue that a registration exemption should be designed for tokens that are in fact securities. See Rohr & Wright, supra note 27, at 522–23.

494 Klohn et al., supra note 491, at 36.

495 Id. at 37.

496 See id. (presenting this line of thought as an argument against the prospectus requirement).

497 For additional requirements, see id. at 38 (“What rights does the token convey? . . . On which exchanges will the token be tradable? How exactly does the (decentralized) business model work? What factors determine the network effects? Why have no similar networks been created so far? Are there any competitors in the market? What is the regulatory environment like? What experience do the mostly very young founders have? Which blockchain technology is the basis for the network? Which
First, most ICOs are launched by a blockchain-based venture and, accordingly, there should be a focus on the technological aspects of the project. On that manner, Hacker and Thomale have suggested that companies that launch ICOs should be required “to publish the code underlying the blockchain-based vehicle and the token sale at least one month in advance of the token sale.”\(^{498}\) The underlying code of a venture is the \textit{de facto} business model of the project, and hence it is essential information required to make an informed decision. However, a requirement to publish the source code prior to the token sale could be problematic for a twofold reason. First, this requirement will not be effective unless the code will be audited by a reliable intermediary. The analysis presented in this Article suggests that while disclosing the source code significantly predicts success, the number of mismatches between promises made in white papers and the actual code does not affect ICO success. These results imply that investors value the disclosure of the source code but are unable to assess its true quality. Therefore, the focus here should not be on the requirement to disclose the source code—which the majority of ICOs disclose voluntarily anyway—but on an intermediary that will audit the source code. Second, by disclosing the source code, ICOs enable other ventures to imitate their technology, and therefore may lose their competitive advantage. In line with this, Bourveau et al. found a positive and significant association between source code disclosure and crash risks in the long term.\(^{499}\) This point should be considered as well when discussing source code disclosure.

Second, the Article proposes to include a requirement to disclose information about the existence of presale rounds and their terms. The first justification for this requirement is to prevent ventures from maintaining pump-and-dump scams. Rational investors who are exposed to information regarding the presales, would price this information and demand a lower price, or alternatively, the implementation of lock-up mechanisms. The second justification for this requirement is semantic, and it stipulates that the term “initial coin offerings” can be misleading if the token sale event is not the first offering.

Third, the Article proposes to include a disclosure requirement in relation to the ability to create new tokens after the launch of the ICO. Catalini and Gans theorize that in order to maximize the amount raised in a token sale, an ICO should have a predetermined token supply,\(^{500}\) and empirical evidence suggests that the ability to create technological risks exist? Have the relevant smart contracts been audited and, if so, by whom?\(^{500}\)\(^\dagger\).

\(^{498}\) Hacker & Thomale, \textit{supra} note 57, at 42.
\(^{499}\) See Bourveau et al., \textit{supra} note 118, at 44 (reporting data that show the above-mentioned relationship).
\(^{500}\) See Catalini & Gans, \textit{supra} note 104, at 2–31 (explaining why ICOs should limit the supply of tokens available at the outset of the project).
future tokens is negatively associated with the amount raised in an ICO. These results suggest the investors are able to price this type of information, and hence such a requirement will be effective.

Fourth, the Article suggests that ventures should explain in their prospectus why blockchain technology is required for their project. Empirical studies support this suggestion showing that most ICOs do not need blockchain, but yet use it to attract investors driven by hype, and that investors are able to distinguish between ICOs that leverage blockchain technology and ICOs that do not really need to use blockchain. In order for this requirement to be effective, the Article further suggests that a structured methodology to determine whether blockchain is the appropriate technical solution will be developed.

Another area for considerations is the role of rating websites as an information intermediary. While rating scores from rating websites strongly predict successful fundraising, they are generally providing low-quality data. Most of the rating websites do not provide any information regarding the technical aspects of the project, and some of them have been accused of selling their rating scores without conducting due diligence. These findings may indicate that the reputational concerns in the market are not strong enough, or alternatively, that investors are unable to assess the quality of these evaluations due to lack of fundamental knowledge about this innovative industry.

Although a more in-depth analysis of ICO rating websites is required in order to propose conclusive policy suggestions, these findings suggest that, in the current state of the market, rating websites are a source of market inefficiency; the quality of their ratings is typically low, they do not provide any information regarding the technical aspects of the project, and yet their rating scores are strongly associated with ICO success indicators. Therefore, the Article argues that regulators should pay close attention to these rating websites and focus on the (lack of) transparency with regard to their evaluation process.

501. See, e.g., Feng et al., supra note 221, at 25–26 (discussing data that points to the use of blockchain being important to investors regardless of whether the ICO actually needs to use it or not).

502. On that matter, see Karl Wüst & Arthur Gervais, Do you need a Blockchain?, 2018 CRYPTO VALLEY CONFERENCE ON BLOCKCHAIN TECHNOLOGY 45, 45–53 (2018) (espousing a structured methodology for determining whether a particular project requires the use of a blockchain); Morgen E. Peck, Blockchain world — Do you need a blockchain? This chart will tell you if the technology can solve your problem, 54 IEEE SPECTRUM 38, 38–39, 60 (2017) (providing a less technical explanation of a structured methodology to determine the utility of a blockchain for a project).

503. For a similar suggestion, see Hartmann et al., supra note 477, at 37 (acknowledging the transparency of an ICO evaluation process as a critical factor in determining whether that process is reliable).
To conclude, this Article reviewed empirical studies on the characteristics of ICO and determinants of ICO success, compared their findings with studies in the context of IPOs and crowdfunding, and offered theoretical explanations. By comparing determinants of ICO success with determinants of IPOs’ success, the Article contributed to the literature on the classification of tokens as securities, as it showed the circumstances in which ICO investors and initiators behave like IPO investors and initiators.

The Article also provided another perspective for the discussion on ICO regulation, by analyzing informational asymmetries associated with ICOs. It found strong evidence for information asymmetry: ICO investors are given so little information and thus their investment decision cannot be based on completely rational grounds. In addition, the Article outlined three sources for these asymmetries—the absence of standard disclosure requirements, investors’ lack of fundamental technical knowledge, and projects’ early stages of development during the offering—and discussed the role of signaling theory and rating websites in mitigating these asymmetries.

It showed that the effectiveness of signaling in mitigating these asymmetries is limited; ventures that voluntarily disclosed more extensive information in their white papers were not necessarily more successful. Additionally, the Article showed that while independent analysts play a vital intermediary role, and their rating scores are associated with success indicators, their ratings are generally low quality, inaccurate, and do not include any information regarding the technical aspects of the project. Hence, the Article claimed that the effectiveness of ICO rating websites in mitigating the information asymmetry associated with the market is limited as well.

In many cases, the competitive forces of an economy can be relied on to drive abnormal returns in financial markets back down to marginal cost. The analysis presented in this Article suggests that ICOs are not one of those cases. Instead, regulators should address the sources of informational asymmetries discussed in this Article—which are a source of investors’ irrationality—by mandatory disclosure provisions. To this end, the Article developed four specific disclosure requirements tailored to the unique characteristics of ICOs.

VI. APPENDIX

A. Table 1—Empirical Papers

Table 1 presents selected empirical papers. For each paper, it reports the objective of the empirical analysis, the variables used to measure success, sample period, sample size, secondary market sample size, success rate, and sources. The papers presented are as follows: A&S = Amsden & Schweizer; A,G&M = Adhami, Giudici &
Martinazzi; B = Bourveau et al.; Blaseg; B&K = Benedetti & Kostovetsky; B&M = Burns & Moro; C,H,S&W = Cohney, Hoffman, Sklarof & Wishnick; C,G,R&W = Chanson, Gjoen, Risius & Wortmann; D,M&S = Drobetz, Momtaz & Schröder; D,R&V = De Jong, Roosenboom & van der Kolk; EY = Ernst & Young; F = Feng et al.; Fisch; Felix; H,M&V = Huang, Meoli & Vismara; H,N&Y = Howell, Niessner & Yermack; L,L&S = Lee, Li & Shin; L,P&R = Lyandres, Palazzo & Rabetti; M = Momtaz; R = Rhue; Z = Zetzsche et al. The variables used to measure success are divided into two categories. First, variables related to token tradability: 1. Listed: a dummy variable that equals 1 if the related token is traded on an exchange, and 0 otherwise. 2. Listed on CMC (A&S; B&K): a dummy variable that equals 1 if the related token is listed as traded on CoinMarketCap.com, and 0 otherwise. 3. Liquidity (H,N&Y): based on a standard illiquidity measure that has been developed by Amihud. Second, variables related to the amount raised in the ICO: 1. Amount Raised: natural logarithm of amount raised in the ICO in USD. 2. Raised Soft Cap: a dummy variable that equals 1 if the ICO reached its fundraising goal, and 0 otherwise. 3. Raised Capital (B&K): a dummy variable that equals 1 for all ICOs that raised capital, and 0 otherwise. 4. Raised Dummy (L,P&R): a dummy variable that equals 1 if the ICO raised more than 5% of hard cap or more than $10,000 if hard cap is missing; and 0 otherwise.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Objectives</th>
<th>Success Measures</th>
<th>Sample Period</th>
<th>Sample Size</th>
<th>Secondary Market Sample</th>
<th>Success Rate</th>
<th>Sources</th>
</tr>
</thead>
</table>

504. See Yakov Amihud, Illiquidity and stock returns: cross-section and time-series effects, 5 J. FIN. MKT. 31, 34, 37 (2002) (describing Professor Amihud’s illiquidity measure); Yakov Amihud et al., Liquidity and Asset Prices, 1 FOUND. & TRENDS FIN. 269, 313 (2006) (discussing Professor Amihud’s illiquidity measure among other techniques).

505. Forty-two percent of tokens in the sample are traded on an exchange, but only thirty-six percent are listed as traded on CoinMarketCap.com. Amsden & Schweizer, supra note 188, at 32; see also All Cryptocurrencies, COINMARKETCAP, https://coinmarketcap.com/all/views/all/ (last visited Nov. 7, 2019) [https://perma.co/2G8B-BHBL] (archived Nov. 6, 2019) (listing all cryptocurrencies traded on exchanges) [hereinafter COINMARKETCAP].
|---------------|-------------------------------|----------------|----------|-----|-----|-----|

|----------|---|-------------------------------|----------|--------|-----|-----|

506. Out of which 659 have successfully completed an ICO (i.e., the soft cap was reached). Bourveau et al., *supra* note 118.
| Determinants of ICO success, with a focus on disclosure. | Blaseg (2018) | Raised Capital, Amount Raised, Token Tradability (Listed on CMC) | 2014-2017 | 1,104 | 61% (29%) |
| | | | | | |
| Determinants of ICO success, first- | B&M (2018) | Amount Raised | 2017 | 146 | - |

508. Sixty-one percent of ICOs raised capital during the ICO and twenty-nine percent of ICOs have listed their tokens. Id. at 12-13.

509. Twenty-six percent of ICOs have listed their tokens. Benedetti & Kostovetsky, supra note 115, at 15.

510. 146 ICOs that ended between June 2017 and November 2017 and which were trading for a minimum of four months from the first day of trading. Burns & Moro, supra note 243, at 10.
|----------------|---|---|-----------|----|----|---|-----------------------------------|
Whether project’s website is online (in July 2018) and whether the project was active on Twitter and GitHub between May and July 2018. De Jong et al., supra note 243, at 12–13.

512. Twenty-nine percent of the ICOs in the sample have soft cap. Of those, forty-six percent manage to raise more capital than the minimum target amount. Id. at 12.

513. Fifty percent of tokens in the sample are listed as traded on CoinMarketCap.com. Id.; see also COINMARKETCAP, supra note 505 (listing tokens traded on exchanges).
|------------|---------|---|-----------|-----|---|

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICOBench.com, TokenData.io,</td>
</tr>
</tbody>
</table>

514. Thirty-five percent of ICOs have listed their tokens. Feng et al., supra note 221, at 23.
<table>
<thead>
<tr>
<th></th>
<th>Determinants of ICO localization.</th>
<th>2017-2018</th>
<th>915</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Token tradability (Liquidity)</th>
<th>2013-2018</th>
<th>453</th>
<th>47% (31%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H,N& Y (2018)</td>
<td></td>
<td></td>
<td></td>
<td>516</td>
</tr>
</tbody>
</table>

515. 453 tokens that have at least three months of trading data on CoinMarketCap as of April 11, 2018. Howell et al., supra note 89, at 21–22; see also COINMARKETCAP, supra note 505 (aggregating tokens traded on exchanges).

516. Only sixty-one percent (276) of ICOs have disclosed a fundraising goal. Of those, fifty-three percent failed to reach their fundraising goal. Therefore, only thirty-one percent of the total samples reached their fundraising goal. See Howell et al., supra note 89, at 25 (discussing the percentage of ICOs that disclose fundraising goals and the proportion that failed to reach theirs).
|-------------|---|-----------------------------------|----------|------|-----|-------|---|

517. Or if the ICO raised more than $0.5 million in the absence of a soft cap. Lee et al., *supra* note 18, at 1–2.

518. Forty-five percent the ICOs raised more than five percent of the hard cap or, if the hard cap is missing, more than $10,000 (only twenty-six percent of ICOs reach the hard cap). Thirty-nine percent of ICOs have listed their tokens. Lyandres et al., *supra* note 9, at 16.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R (2018)</td>
<td>Analyze ICO characteristics, with a focus on</td>
<td>-</td>
<td>-</td>
<td>1XXX</td>
<td>523</td>
<td>-</td>
<td>Thirty different websites, includin g ICOs.com, ICORati</td>
</tr>
<tr>
<td>Z (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

519. Measured as the total funding amount raised through the ICO (not logged). Momtaz, Initial Coin Offerings, supra note 106, at 37.
520. Twenty-one percent of ICOs have failed—i.e., have been delisted at least at some exchange. Id. at 18.
521. She uses a sample of 435 ICOs, out of which 357 ICOs were completed. See Rhue, supra note 8, at 32 (including a table that demonstrates, among other things, the number of completed ICOs out of the data set).
522. A sample of coins and tokens that has been listed on CoinMarketCap. The sample is restricted to (1) currencies that were launched after January 1, 2017 to exclude established cryptocurrencies; and (2) currencies that have at least three months of data as of March 31, 2018. Id. at 16; see also COINMARKETCAP, supra note 505 (listing all cryptocurrencies listed on exchanges).
523. Over 1000. According to the authors, the database is being continuously updated. See Zetzsche et al., supra note 82, at 5 (drawing from a “rapidly growing” database of ICOs).
524. 18.7 percent of the ICOs in the sample have failed to reach their fundraising goal, while 8.25 percent managed to reach the goal. For 68.15 percent of the sample, they lack reliable information on the subscription status. Id. at 15 n.31.
B. Table 2—Determinants of ICO Success

Table 2 summarizes empirical findings for selected variables. It presents the association between ICO success and the following variables. 1. WP Disclosure: a dummy variable that equals 1 if the ICO disclosed a white paper, and 0 otherwise. 2. WP Quality: proxies of white paper quality vary in the literature and include white paper length (A&S; B; Fisch), whether the ICO has an informative white paper (B), and number of unique words in the white paper (L,P&R; Blaseg; F). 3. SC Disclosure: a dummy variable that equals 1 if an ICO published its source code in an online repository such as Github, and 0 otherwise. 4. Team Size: the natural logarithm of the number of team members (B); the number of team members (M; A&S; D,R&V); the number of team members squared (B&M); or a variable equals 1 if founding team size is disclosed, and 0 otherwise (F). 5. Use of Proceeds: a dummy variable that equals 1 if information about the use of proceeds is disclosed, and 0 otherwise. 6. Presale: a dummy variable that equals 1 if the ICO had a presale, and 0 otherwise (A&S; B&K; H,N&Y; Fisch; M; L,L&S); or a dummy variable that equals 1 if the ICO has information about the amount raised in a presale (L,P&R). 7. Preregistering/KYC: a dummy variable that equals 1 if the ICO’s investors are required to provide information to confirm their identity (KYC) or to register in order to participate (whitelist). 8. Bonus: a dummy variable that equals 1 if the ICO offers a bonus before the ICO, and 0 otherwise; or a dummy variable that equals 1 if an ICO offers a bonus over 20%, and 0 otherwise (L,L&S). Note that some authors provide different variables to bonuses offered during the ICO and bonuses given during the pre-ICO (e.g., A&S). 9. Ethereum Blockchain: a dummy variable that equals 1 if the ICO is on the Ethereum platform, and 0 otherwise. 10. Utility token: definitions for utility tokens vary in the literature. Consequently, the table reports the variable used in each paper. A,G&M use a variable that equals 1 if the token can be used to access or pay for services, and 0 otherwise; Fisch
uses a variable that equals 1 if an ICO highlights the utility of its token, and 0 otherwise. H,N&Y use a variable that equals 1 if the related token represents the right to access a service that the issuer will provide through a new network, and 0 otherwise. 11. Lock-up Mechanism: a dummy variable that equals 1 if information about lock-up mechanism is disclosed in the white paper, and 0 otherwise. 12. Token Total Supply: the natural logarithm of the total amount of tokens. 13. Fraction of Tokens Sold: percentage of tokens distributed in the ICO. 14. ICO Duration: the duration of the ICO in days; or the announced number of days for which an ICO accepts funding (Blaseg). 15. Soft Cap/Fundraising Goal: a dummy variable that equals 1 if the ICO has a soft cap/fundraising goal, and 0 otherwise. 16. Accepting Ether: a dummy variable that equals 1 if the ICO accepts Ether, and 0 otherwise 17. Accepting Bitcoin: a dummy variable that equals 1 if the ICO accepts Bitcoin, and 0 otherwise. 18. Accepting USD/Fiat: a dummy variable that equals 1 if the ICO accepts USD, and 0 otherwise (H,N&Y; R); or a dummy variable that equals 1 if the ICO accepts any fiat currency, and 0 otherwise (A&S; M;) 19. Has Country restriction: a dummy variable that equals 1 if the ICO is restricted in certain countries, and 0 otherwise (L,L&S). 20. US Restriction: a dummy variable that equals 1 if US citizens were from the ICO, and 0 otherwise.
Variable Disclosure Practices

<table>
<thead>
<tr>
<th>Disclosure Practices</th>
<th>(+)</th>
<th>(-)</th>
<th>—</th>
</tr>
</thead>
</table>

Presales Practices

<table>
<thead>
<tr>
<th>Presale</th>
<th>(+)</th>
<th>(-)</th>
<th>—</th>
</tr>
</thead>
</table>

525. See Bourveau et al., supra note 118, at 18–20, 44 (finding that white paper length and informative white paper (a dummy variable according to ICOBench) reliably predicts ICO success, but when manually analyzing the association between disclosure practices (ICO team information, token allocation information, founder tokens vesting period, use of proceeds, white paper opacity, and white paper length) and ICO success, finding no significant association).

526. The coefficient is significant in most specifications. Feng et al., supra note 221, at 27.

527. The number of words in a white paper is not associated with the amount raised, but significantly and positively associated with token tradability. See Blaseg, supra note 229, at 31–32 (displaying tables that show the number of words in a white paper have little effect on funding amounts raised, but significantly affect whether the token gets listed on an exchange).

528. See Lee et al., supra note 18, at 19, 43 (finding that the existence of presales increases the success likelihood, but that presales are negatively related to the amount raised).

529. See id. at 40 (using an indicator that equals 1 if an ICO offers a bonus over twenty percent (equivalent to a discount of 16.7 percent), and 0 otherwise).
<table>
<thead>
<tr>
<th>Blockchain and Token Type</th>
<th>D,R&V (2018)*</th>
<th>(2018)(^{531}), B (2018); Blaseg (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethereum Blockchain</td>
<td>H,N&Y (2018); M (2018); Fisch (2019); D,R&V (2018)(^{532})</td>
<td>A&S (2018) (^{533})</td>
</tr>
<tr>
<td>Economic Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lock-up Mechanism</td>
<td>B (2018); H,N&Y (2018); Blaseg (2018); F (2019)</td>
<td></td>
</tr>
</tbody>
</table>

530. See De Jong et al., supra note 243, at 16–17 (finding that not having a bonus scheme is associated with ICO success).

531. See Amsden & Schweizer, supra note 188, at 21 (finding, to the contrary, that offering a bonus during the ICO is significantly and positively associated with ICO success).

532. See De Jong et al., supra note 243, at 30 (finding that the variable Ethereum Platform is positively and significantly associated with the amount raised, but insignificantly associated with token tradability).

533. See Amsden & Schweizer, supra note 188, at 33, 37 (finding that the variable Ethereum Platform is negatively associated with the amount raised in an ICO, but positively associated with token tradability).

534. See Burns & Moro, supra note 243, at 22, 29 (also finding that the variable Ethereum Platform is negatively associated with first-day returns).

535. See De Jong et al., supra note 243, at 3, 17–18 (finding that the percentage of tokens retained by the project is significantly and positively associated with ex post success measures, but is insignificantly associated with fundraising success).

536. See Lee et al., supra note 18, at 18 (finding that failed ICOs are longer than successful ICO, with the difference being significant (p<0.1)).
C. Table 3—Success and Failure Rates

Table 3 presents ICOs’ success and failure rates. For each paper, it reports the indicator used to measure success, success rate, the indicator used to measure failure, failure rate, and sample period and size. Measures of success: 1. Listed: a dummy variable that equals 1 if the related token is traded on an exchange, and 0 otherwise. 2. Listed on CMC (A&S): a dummy variable that equals 1 if the related token is listed as traded on CoinMarketCap.com, and 0 otherwise. 3. Raised Soft Cap: a dummy variable that equals 1 if the ICO reached its fundraising goal, and 0 otherwise. 4. Raised capital (B&K): a dummy variable that equals 1 for all ICOs that raised capital, and 0 otherwise. 5. Raised dummy (L,P&R): a dummy variable that equals 1 if the ICO raised more than 5% of hard cap or more than $10,000 if hard cap is missing, and 0 otherwise. 6. Raised to Hard Cap (L,P&R): “The ratio of the amount raised in the ICO to the hardcap.” Measures of failure: 1.

537. See id. at 16 (while not analyzing a dummy soft cap variable, still finding that the average soft cap for successful ICOs is nearly identical to that set by unsuccessful ICOs, with the difference being insignificant).

538. See De Jong et al., supra note 243, at 30 (finding that accepting fiat is positively and significantly associated with the amount raised, but insignificantly related to token tradability).

539. See Amsden & Schweizer, supra note 188, at 34 (finding that accepting fiat is positively associated with the amount raised, but negatively related to token tradability).
Extreme Negative Return (B): a dummy variable that equals 1 if cumulative raw returns are less than or equal to -75% at the end of either the three-month, six-month, or twelve-month period after the ICO first begins trading on CMC, and 0 otherwise. 2. Delisted: a dummy variable that equals 1 if the related token was delisted at one or more exchanges, and 0 otherwise. 3. Project Death (M): a dummy variable that equals 1 if the related token was delisted at every token exchange platform, and 0 otherwise. 4. Lost All Their Value (EY): a dummy variable that equals 1 if the return to ICO investors have declined by more than 90% (from January 1 to September 2, 2018), and 0 otherwise.
Table: ICO v. IPO: EMPIRICAL FINDINGS

<table>
<thead>
<tr>
<th>Paper</th>
<th>Success Measure</th>
<th>Success Rate</th>
<th>Failure Measure</th>
<th>Failure Rate</th>
<th>Sample Period (Size)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (2018)</td>
<td>Raised Soft Cap</td>
<td>85%</td>
<td></td>
<td></td>
<td>2014–2018 (776)</td>
<td>The secondary market sample is restricted to tokens that have at least three months of trading data as of May, 2018</td>
</tr>
<tr>
<td>EY (2018)</td>
<td></td>
<td></td>
<td>Lost All Their Value (-90%)</td>
<td>30%</td>
<td>2015–2017 (141)</td>
<td>30% of ICOs have declined by more than 90% from January 1 to September 2, 2018.</td>
</tr>
<tr>
<td>H,N & Y (2018)</td>
<td>Raised Soft Cap*</td>
<td>47% (31%)</td>
<td></td>
<td></td>
<td>2013–2018 (268)</td>
<td>The sample is restricted to tokens that have</td>
</tr>
</tbody>
</table>

540. Only sixty-one percent (276) of ICOs have disclosed a fundraising goal. Of those, fifty-three percent failed to reach their fundraising goal. Therefore, only thirty-one percent of the total sample reached their fundraising goal. Howell et al., supra note 89, at 25 (reporting the percentage of ICOs disclosing fundraising goals and the percentage of that group failing to reach those goals).
D. Table 4—Underpricing

Table 4 displays empirical findings related to underpricing. For each paper, it reports the indicator used to measure underpricing, the mean value, the median value, and the number of observations. Measures of ICO underpricing vary in the literature and include the following indicators. 1. **ICO to Open**: The difference between the ICO price and the first day opening price. 2. **ICO to Close**: The difference between the ICO price and the first day closing price. 3. **Open to Close**: the difference between the closing and opening price of the first day. 4. **ICO to 5th Close**: The difference between the ICO price and the closing price five days after the token is listed.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Indicator</th>
<th>Mean Value</th>
<th>Median Value</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.L&S (2018)</td>
<td>Raised Soft Cap</td>
<td>45.4%</td>
<td></td>
<td>(453)</td>
</tr>
<tr>
<td>L.P&R (2018)</td>
<td>Raised Dummy</td>
<td>46%</td>
<td></td>
<td>(3,068)</td>
</tr>
<tr>
<td></td>
<td>Raised to Hard Cap</td>
<td>46% (33%)</td>
<td></td>
<td>(1,200)</td>
</tr>
<tr>
<td></td>
<td>Listed</td>
<td>38%</td>
<td></td>
<td>(1,516)</td>
</tr>
<tr>
<td>M (2018)</td>
<td>Delisted</td>
<td>21%</td>
<td></td>
<td>(495)</td>
</tr>
<tr>
<td></td>
<td>Project Death</td>
<td>13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z (2018)</td>
<td>Failed to Reach the Fundraising Goal</td>
<td>18.7%</td>
<td></td>
<td>(1XXX)</td>
</tr>
</tbody>
</table>

541. An "ICO is deemed successful if its soft cap was reached or the project raised more than $0.5 million in the absence of a soft cap." Lee et al., supra note 18, at 40.

542. For 68.15 percent of the sample, they lack reliable information on the subscription status. Zetzsche et al., supra note 82, at 15 n.31.
<table>
<thead>
<tr>
<th>Paper</th>
<th>Measure</th>
<th>Mean</th>
<th>Median</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,G&M (2018)</td>
<td>ICO to Close</td>
<td>919%</td>
<td>24.7%</td>
<td>140</td>
</tr>
<tr>
<td>B (2018)</td>
<td>Log Open to Close</td>
<td>14%</td>
<td>6%</td>
<td>659</td>
</tr>
<tr>
<td></td>
<td>Log ICO to Close</td>
<td>39%</td>
<td>40%</td>
<td>300</td>
</tr>
<tr>
<td>B&K (2018)</td>
<td>ICO to Open (equal-weighted returns)</td>
<td>179%</td>
<td>-</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>ICO to Close</td>
<td>111%</td>
<td>42.5%</td>
<td>95</td>
</tr>
<tr>
<td>C,G,R&W (2018)</td>
<td>ICO to 5th Close</td>
<td>14.8%</td>
<td>0.1%</td>
<td>1,403</td>
</tr>
<tr>
<td>D,M&S (2018)</td>
<td>Open to Close</td>
<td>102%</td>
<td>26%</td>
<td>255</td>
</tr>
<tr>
<td>Felix (2018)</td>
<td>ICO to Close</td>
<td>158.2%</td>
<td>24.4%</td>
<td>432</td>
</tr>
<tr>
<td>L,L&S (2018)</td>
<td>ICO to Close</td>
<td>215.7%</td>
<td>14.7%</td>
<td>580</td>
</tr>
<tr>
<td>L,P&R (2018)</td>
<td>Log ICO to Open</td>
<td>11.6%</td>
<td>3.3%</td>
<td>603</td>
</tr>
<tr>
<td>M (2018)</td>
<td>Open to Close</td>
<td>8.2%</td>
<td>2.6%</td>
<td>302</td>
</tr>
</tbody>
</table>

543. Only ICOs that were listed within sixty days. Benedetti & Kostovetsky, supra note 115, at 21, 23.